
Welcome to
SENG 480B / CSC 485A / CSC 586A

Self-Adaptive and 
Self-Managing Systems

Dr. Hausi A. Müller
Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a
http://courses.seng.uvic.ca/courses/2015/summer/csc/485a
http://courses.seng.uvic.ca/courses/2015/summer/csc/586a

1



Announcements
 Wednesday, June 17
 A2 tutorial in ECS 266 3:00-4:00 pm

 Friday, June 19
 A2 due

 Grad project
 Handed out June 15
 Due July 25

 Midterm 1
 Should be graded by June 18
 Talk about answers on June 18

2



Assignment 2 Tutorial
Dr. Ron Desmarais

Wednesday, June 17
3:00-4:00 pm ECS 266

3



Autonomic Computing Vision

4

Autonomic Computing is really 
about making systems
self-managing …

—Paul Horn, IBM Research, 2001



Reading Assignment
 Kephart, J.O., Chess, D.M.: The Vision of 

Autonomic Computing. IEEE Computer 36(1):41-
50 (2003)
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1160055

 IBM: An Architectural Blueprint for Autonomic 
Computing, 4th Ed. (2006)
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&re
p=rep1&type=pdf

5



ACRA
AC Reference Architecture 

6



ACRA
AC Reference Architecture 

7



ACRA: Autonomic Computing 
Reference Architecture 
Level 5—highest

 Manual manger who operates a common system management interface
Level 4

 Autonomic Managers to integrate and orchestrate several self-* capabilities for a 
particular domain (e.g., DB, weather station)

 Implements system-wide capabilities
Level 3

 Implements specific self-* using Autonomic Managers (AM)
Level 2

 Consistent, standard Manageability Interfaces (MI) for accessing and controlling 
the managed resources in a uniform manner

 The MIs are implemented with Manageability Endpoints (ME)
Level 1—lowest

 System components or managed resources (hardware, 
software) possibly with embedded self-management

8



Autonomic Manager

9



Autonomic Computing Manifesto
Fundamental Objectives
 Self-configuration: the system sets and resets its 

internal parameters so as to conform to initial 
deployment conditions and to adapt to dynamic 
environmental changes, respectively.

 Self-healing: the system detects, isolates and repairs 
failed components so as to maximise its availability.

 Self-optimisation: the system proactively strives to 
optimise its operation so as to improve efficiency with 
respect to predefined goals.

 Self-protection: the system anticipates, identifies and 
prevents various types of threats in order to preserve its 
integrity and security. 

10



11

Increased 
Responsiveness
Adapt to dynamically
changing environments

Business Resiliency
Discover, diagnose,

and act to prevent 
disruptions

Operational
Efficiency
Tune resources and balance 
workloads to maximize use of 
IT resources

Secure Information 
and Resources

Anticipate, detect, identify, 
and protect against attacks

Autonomic Managers
Implement Self-* MAPE-K Loops

*Self



Class Exercise
 Identify an application requiring at least 3 of the 4 self* 

goals listed below
 Discuss the trade-off among the goals

12



Manual Manager
 Management or integrated solutions console
 Enables a human to perform and delegate 

management functions
 Collaborates with or orchestrates autonomic 

managers
 Set-up, configuration, run-time monitoring, control
 Manage trust—different levels of feedback
 Connecting knowledge source
 Specifying policies

13



Autonomic Manager

Knowledge

Plan

ExecuteMonitor

Analyze

Sensors Effectors

Sensors Effectors

ManualAutomatic

14



Enterprise Service Bus
 Connects and integrates

various AC building blocks
 Autonomic Managers (AMs)
 Manageability Endpoints (MEs)
 Knowledge repositories
 Aggregating multiple manageability

mechanisms for a single
manageable resource

 Facilitating one or more AMs to 
manage one or more MEs

 WSDM standard
 Web Service Distributed Management

15

ME

AM

ME ME

AMAM AM

ME

AM

ME



Useful Papers under Resources
Course Web Site
 Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era. IBM Systems 

Journal 42(1):5-18 (2003) 
 Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 

36(1):41-50 (2003) 
 Kluth, A.: Information Technology: Make It Simple. The Economist (2004)

 Huebscher, M.C., McCann, J.A.: A Survey of Autonomic Computing—Degrees, Models, 
and Applications. ACM Computing Surveys, 40 (3):7:1-28 (2008) 

 Müller, H.A., Kienle, H.M., Stege, U.: Autonomic Computing: Now You See It, Now You 
Don’t—Design and Evolution of Autonomic Software Systems. In: De Lucia, A.; Ferrucci, 
F. (eds.): Software Engineering International Summer School Lectures: University of 
Salerno. LNCS, Springer-Verlag, Heidelberg, pp. 32–54 (2009) 

 Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., 
Saffre, F., Schmidt, N., Zambonelli, F.: A Survey of Autonomic Communications. ACM 
Transactions on Autonomous and Adaptive Systems (TAAS) 1(2):223-259 (2006) 

16



Useful Papers under Resources
Course Web Site
 Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser, G.E., Phung, D.: A Control 

Theory Foundation for Self-Managing Computing Systems. IEEE Journal on Selected 
Areas in Communications 23(12):2213-2222 (2005) 

 Müller, H.A., Pezzè, M., Shaw, M.: Visibility of Control in Adaptive System. In: 2nd 
ACM/IEEE International ICSE Workshop on Ultra-Large-Scale Software-Intensive 
Systems (ULSSIS 2008), pp. 23-26, ACM, New York, NY, USA (2008) 

 Dawson, R., Desmarais, R., Kienle, H.M., Müller, H.A.: Monitoring in Adaptive 
Systems Using Reflection. In: 3rd ACM/IEEE International ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2008), 
pp. 81-88, ACM, New York, NY, USA (2008) 

 OASIS: Web Services Distributed Management: Management of Web Services 
(WSDM-MOWS) 1.1 OASIS Standard (2006)

 OASIS: Web Services Distributed Management: Management Using Web Services 
(WSDM-MUWS) 1.1 OASIS Standard (2006)

 Kreger, H., Studwell, T.: Autonomic Computing and Web Services Distributed 
Management (2005)

 IBM: Symptoms Reference specification Version 2.0 (2006)
17



Useful Papers under Resources
Course Web Site
 Study these papers
 Immerse yourself in the autonomic computing literature 

and technology
 Huge asset for your job application and future job

18



19

The devil lies in the details ...

Standards, data and control 
integration, interfaces, endpoints, 

services, SOA ...

Implementing Autonomic Elements



Information Interchange in the 
ACRA Architecture
 What information is passed 

between the components of an 
autonomic architecture 
adhering to the ACRA 
reference architecture?

 Information is exchanged in 
the form of events and 
knowledge in the knowledge 
bases

 Ideally the exchanged 
information is standardized
 Formats
 Schemas

 Information is exchanged 
between the manager and the 
managed element
 Events
 Set and get operations

 Policies are injected into 
autonomic elements through 
the effectors on top of the 
manager

 Information is passed around 
the MAPE-K loop

20



MAPE-K Loop
Standards & Interfaces

21

Events

Symptoms

Policies

Scripts

Script 
Interpreter

Symptom 
Database



Information Interchange in the 
ACRA Architecture
 What information is passed 

between the components of an 
autonomic architecture 
adhering to the ACRA 
reference architecture?

 Information is exchanged in 
the form of events and 
knowledge in the knowledge 
bases

 Ideally the exchanged 
information is standardized
 Formats
 Schemas

 Information is exchanged 
between the manager and the 
managed element
 Events
 Set and get operations

 Policies are injected into 
autonomic elements through 
the effectors on top of the 
manager

 Information is passed around 
the MAPE-K loop

22



Events

 Event abstractions
 Event architectures
 Event systems
 Event languages

 Event patterns 
 Event models
 Event processing standards
 Event exchange standards

23

 An event is an asynchronous state transition in the 
managed element

 Events are generated by managed elements and are 
processed by autonomic managers

 Event processing is a discipline that aims to define and 
develop



Common Base Event Model
CBE
 An event

 An occurrence of a situation
 Variety of forms: business, 

autonomic, management, tracing 
and logging events

 Events encapsulate message data 
and constitute thus the foundation 
for complex distributed systems

 Data elements of events need to 
be in a consistent format
 to enable correlation
 to facilitate effective intercommunication

 The CBE model is an event 
exchange standard for events 
exchanged in distributed 
applications

 The standard facilitates 
consistency in the elements 
themselves and in their format

 3-tuple CBE element
 Identification of the component that is 

reporting the situation 
 Identification of the component that is 

affected by the situation—may be the 
same as the component reporting the 
situation

 The situation itself

24



Eclipse Log and Trace Analyzer

 The Eclipse Log and Trace Analyzer maps 
proprietary log formats into a common event 
model called Common Base Event (CBE)

 Parsers provided with the Log and Trace 
Analyzer map the log records from their 
proprietary output format to the CBE model

25



Event Exchange Format Standard
Common Base Events (CBE)
 CBEs communicate events in a structured way
 De facto standard for reporting events
 Logging, tracking, management, or business events 

can all be mapped to CBEs
 CBE is an XML structure consisting of three parts:
 Identification of the component reporting the situation 

(reporterComponentId)—optional; can be source
 Identification of the component that is affected by the 

situation (sourceComponentId)
 The situation itself (situation)

26A Practical Guide to the IBM Autonomic Toolkit, IBM Redbooks, April 2004



Event Exchange
Standard: CBE Example
 <CommonBaseEvent creationTime="2008-08-16T18:14:27Z" 

globalInstanceId="N1FB97200C5B11D88000AB0D1D704CDE" 
msg="[Fri Aug 15 18:14:27 IST 2008] ITSO001I 
SampleManagedResource starting..." severity="20" version="1.0.1">

<sourceComponentId application="ITSOSimpleApp1“
component="ITSO Simple App#1" componentIdType="Name“
location="server1.itso.ibm.com" locationType="IPV4“
subComponent="ITSOSubComponent"/>
<msgDataElement>

<msgId>ITSO001I</msgId>
</msgDataElement>

<situation categoryName="StartSituation">
<situationType xsi:type="StartSituation“
reasoningScope="INTERNAL“
successDisposition="SUCCESSFUL" 
situationQualifier="START INITIATED"/>

</situation>
</CommonBaseEvent>

27
A Practical Guide to the IBM Autonomic Toolkit, IBM Redbooks, April 2004



Generating CBEs 
using Eclipse

try {
ISimpleEventFactory sefi = SimpleEventFactoryImpl.getInstance();
ICommonBaseEvent cbe = sefi.createCommonBaseEvent();
cbe.setCreationTime(System.currentTimeMillis());
cbe.setPreferredVersion(ICommonBaseEvent.VERSION_1_0_1);

// create a new instance of a Source Component and initialize it
IComponentIdentification sourceComponentId = 

sefi.createComponentIdentification();
sourceComponentId.setLocation("127.0.0.1");
sourceComponentId.setLocationType("IPV4");
sourceComponentId.setComponent("Ex App Server");
sourceComponentId.setSubComponent("App Server DB");
sourceComponentId.setComponentIdType("Application");
sourceComponentId.setComponentType("Application Server");

// now set source component in CBE 
cbe.setSourceComponentId(sourceComponentId); 

28

IConnectSituation connSituation = sefi.createConnectSituation();
connSituation.setSuccessDisposition("UNSUCCESSFUL");
connSituation.setSituationDisposition("AVAILABLE");
ISituation situation = sefi.createSituation();
situation.setCategoryName("ConnectSituation");
situation.setSituationType(connSituation);
cbe.setSituation(situation); // set the situation in CBE

IMsgDataElement mde = sefi.createMsgDataElement();
mde.setMsgId("AS005E");
mde.setMsgIdType("AppServer");
// add message data element to CBE
cbe.setMsgDataElement(mde); 

// invoke manageability interface method 
// to send CBE to autonomic manager 
sendEventToManager(cbe);

} 
catch (Throwable th) {

System.out.println("Could not create CBE: " + th); }
}

IBM: Autonomic Computing Toolkit 
Developer's Guide, Aug 2004



Advantages of
Common Base Event Format
 Works for analysis tools from multiple sources 

and vendors provided CBE is used
 Enables cross-component and cross-vendor
 Analysis
 Generation
 Parsing
 Logging
 Tracing
 Diagnostics
 ...

29



MAPE-K Loop
Standards & Interfaces

30

Events

Symptoms

Policies

Scripts

Script 
Interpreter

Symptom 
Database



Symptoms
 A symptom is a form of knowledge that indicates a possible problem or 

situation in the managed environment.
 For example, “high fever” might be defined as a temperature “greater than 39 degrees Celsius”
 The symptom is defined by the expression “temperature greater than 39 degrees Celsius” and 

described as “high fever”

 Symptoms are
 Recognized in the monitor component of the MAPE-K loop
 Used as a basis for analysis of a problem or a goal
 Based on predefined elements—for example, definitions and descriptions in a symptoms DB

 Symptom definition
 Expresses conditions used by the monitor to recognize the existence of a symptom
 Specifies the unique characteristics of a particular symptom that is recognized.

 Symptoms are not just for self-healing
 Symptoms are connected to self-healing because their primary intent is to indicate a problem
 Symptoms can also be used as triggers for other kinds of problems
 Virtually all kinds of problems or predictions may start due to the occurrence of a symptom

31
IBM: Symptoms Reference Specification Version 2.0 2006



Symptom Artifacts
 Symptom element

 Contains all information necessary to create a new symptom occurrence
 Symptom occurrence

 Contains the run-time information associated with a specific instance of a 
symptom element

 Each occurrence basically refers to the same symptom as it is defined in 
the symptom element, but the context to which it is applied may vary.

 Correlation engine
 Contains the logic used to create symptom elements
 As input the correlation engine receives external stimuli and checks if a 

symptom occurrence should be created as a response.

32
IBM: Symptoms Reference Specification Version 2.0 2006



Symptom Artifacts
 Symptom metadata

 The generic part of the information that composes a symptom
 It is present on all kinds of knowledge, and is used when knowledge must be 

treated generically, even though it is a symptom element
 This is the “what” part of a symptom

 Symptom schema
 The specific part of the information that composes a symptom
 It is the template that is used when a symptom occurrence is created
 The symptom schema contributes to the “what” part of a symptom

 Symptom definition
 A generic piece of logic that can be used to recognize a symptom
 As expected, this logic should be compatible with the respective correlation 

engine that will be used to process the symptom
 This is the “how” part of a symptom

33
IBM: Symptoms Reference Specification, Version 2.0, 2006



Symptom Artifacts

34M. Perazolo, IBM: Symptoms deep dive, Part 1
The autonomic computing symptoms format, Oct 2005



Symptom Effect Artifact
 In simple situations where no analysis or planning is performed, a 

symptom can be used to define the kind of reaction expected after it 
is recognized

 Symptom effects can also be used in an AM that implements an on-
the-fly strategy for creating change requests

 Symptom effect artifact could be
 An action to be performed in a manageable resource
 A human readable recommendation
 Something simple such as running a script or a piece of code

 The current symptom specification defines only two forms of effect
 Recommendation: A textual representation of what an operator should do to fix 

the problem associated with a particular symptom
 Action: A piece of code that defines tasks and procedures used to fix the 

problem associated with a particular symptom

35M. Perazolo, IBM: Symptoms deep dive, Part 1
The autonomic computing symptoms format, Oct 2005



Symptoms in MAPE-K Loop
 Symptoms are recognized by a correlation engine in the monitor
 After recognition a new symptom occurrence is created
 The symptom occurrence is then passed from the monitor to the 

analysis part of the MAPE-K loop

36M. Perazolo, IBM: Symptoms deep dive, Part 1
The autonomic computing symptoms format, Oct 2005



Symptom Metadata
Property Description
Identification Identifies a symptom uniquely within the MAPE-K loop

A unique alphanumeric id
Versioning Contains the change history associated with the symptom
Annotation Describes the symptom in a human readable form to explain different 

characteristics of the symptom
Location Tells where the authoritative version of this symptom resides and 

points to the original K-source that contains the symptom
Scope The manageable resource type a symptom can be applied to

At run time, the scope property will also contain the context 
associated with the symptom occurrence (e.g., the instance of the 
manageable resource type that is the root cause of the problem or 
indication defined by the symptom).

Lifecycle A run-time property containing the current state associated with a 
symptom occurrence
In the case of symptoms, the states are: created, building, analyzed, 
planning, executing, scheduled, completed, expired, and fault. 37



Symptom Schema
Attribute Description
Description Explains in a human readable form what the symptom is about. 

Describes the kinds of problems or situations associated with the 
symptom when a symptom occurrence is recognized by an AM.

Example Shows in a human-readable form an example of a problem or 
situation where the symptom is likely to occur.

Solution Shows in a human-readable form a possible solution for the 
problem or situation described by the example attribute.

Reference Contains a URL associated with the symptom that lets a user get 
the latest information associated with that symptom from the Web. 

Type Contains the type associated with the symptom occurrence. It 
ultimately equates to a symptom category that enables you to 
organize multiple symptoms in a common taxonomy of symptoms.

Probability Denotes the probability or certainty associated with the problem or 
situation indicated by a symptom occurrence.

Priority Denotes the priority of a symptom occurrence in relation to other 
symptoms with the same scope. 38



Symptom Definition
 Symptom definitions

 Is an artefact used to recognize a symptom occurrence
 Must be compatible with their respective correlation engines 

 A symptom definition can be anything
 XPATH expression 
 Regular expression 
 Decision tree 
 Dependency graph 
 Prolog predicate 
 ACT pattern 
 TEC rule 
 Neural network 

39



Symptom Examples
Symptom name Symptom description Symptom definition Symptom recommendations
Authentication 
failure

Attempt to access resources 
associated with this symptom 
was made, but there was an 
authentication failure

Collection pattern:
event(wrong_password) 
n=3
timeout=24h 

Log for auditing purposes

Authorization 
failure

Unauthorized attempt to access 
resources associated with this 
symptom was made, and access 
was denied

Filter pattern:
event(access_denied) 

Log for auditing purposes

Prevention 
deployment failure

Failure occurred while deploying 
security prevention resources 
(virus update table, security 
patch, and so on)

Filter pattern:
event(security_install_failed) 

Analyze security prevention 
failure and alert security 
administrator 

40M. Perazolo, IBM: Symptoms deep dive
Part 2: Cool things you can do with symptoms, Dec 2005



Symptom Examples
Symptom name Symptom description Symptom definition Symptom 

recommendations
Configuration 
unavailable

Some configuration information 
for the resources associated with 
this symptom was not found

Filter pattern:
event(configuration_not_found) 

Alert administrator and flag 
service provided by 
resource as "marginal"

Configuration 
invalid

Configuration information for the 
resources associated with this 
symptom was processed and 
determined to be invalid

Sequence pattern:
event(configuration_found)
event(configuration_invalid) 

Alert administrator and flag 
service provided by 
resource as "marginal"

Dependency 
unavailable

One or more dependencies 
(resources) are non-existent and 
needed by other resources

Sequence pattern:
event(dependency_request, 
resource)
event(inventory, resource not 
within [inventory_list]) 

Install missing resource

Dependency 
mismatch

Release level of one or more 
resources associated with this 
symptom are not what was 
expected

Filter pattern: 
event(wrong_release) 

Update resource to required 
release

41M. Perazolo, IBM: Symptoms deep dive
Part 2: Cool things you can do with symptoms, Dec 2005


