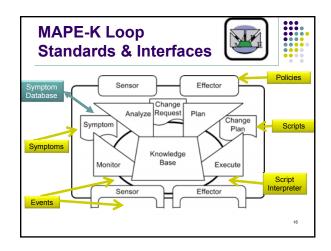


Useful Papers under Resources **Course Web Site**


- Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser, G.E., Phung, D.: A Control Theory Foundation for Self-Managing Computing Systems. IEEE Journal on Selected Areas in Communications 23(12):2213-2222 (2005)
- Müller, H.A., Pezzè, M., Shaw, M.: Visibility of Control in Adaptive System. In: 2nd ACM/IEEE International ICSE Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS 2008), pp. 23-26, ACM, New York, NY, USA (2008)
- Dawson, R., Desmarais, R., Kienle, H.M., Müller, H.A.: Monitoring in Adaptive Systems Using Reflection. In: 3rd ACM/IEEE International ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2008), pp. 81-88, ACM, New York, NY, USA (2008) OASIS: Web Services Distributed Management: Management of Web Services
- (WSDM-MOWS) 1.1 OASIS Standard (2006) OASIS: Web Services Distributed Management: Management Using Web Services
- (WSDM-MUWS) 1.1 OASIS Standard (2006) Kreger, H., Studwell, T.: Autonomic Computing and Web Services Distributed Management (2005)
- IBM: Symptoms Reference specification Version 2.0 (2006)

Useful Papers under Resources **Course Web Site**

- · Study these papers
- · Immerse yourself in the autonomic computing literature and technology
- · Huge asset for your job application and future job

Information Interchange in the **ACRA** Architecture

- What information is passed between the components of an autonomic architecture adhering to the ACRA reference architecture?
- Information is exchanged in the form of events and knowledge in the knowledge bases
- Ideally the exchanged information is standardized
 - Formats Schemas
- between the manager and the managed element Events Set and get operations

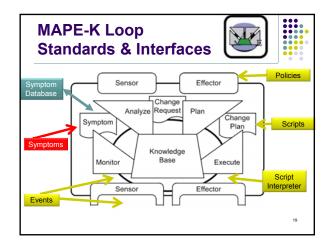
Information is exchanged

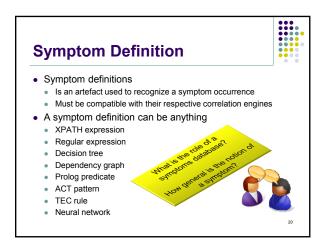
- · Policies are injected into autonomic elements through the effectors on top of the manager
- Information is passed around the MAPE-K loop

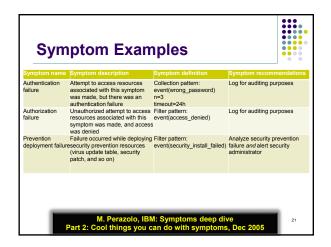
develop • Event abstractions Event architectures • Event systems

Events

- Events are generated by managed elements and are processed by autonomic managers
- Event processing is a discipline that aims to define and Event patterns

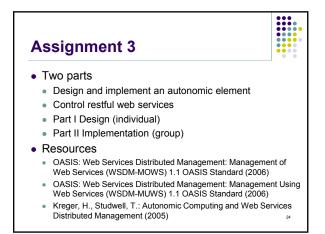

• An event is an asynchronous state transition in the


managed element

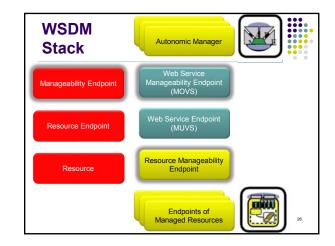

- - Event processing standards

Event models


- Event languages
- Event exchange standards



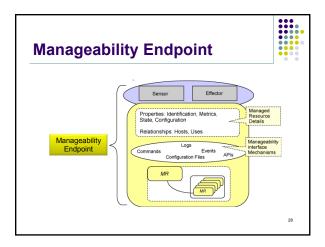
	tom Exam	ihiea	•••
Symptom name Sym	ptom description	Symptom definition	Symptom recommendations
unavailable for th	ne configuration information he resources associated with symptom was not found	Filter pattern: event(configuration_not_found)	Alert administrator and flag service provided by resource as "marginal"
invalid reso symp		Sequence pattern: event(configuration_found) event(configuration_invalid)	Alert administrator and flag service provided by resource as "marginal"
unavailable (reso	ources) are non-existent and ded by other resources	Sequence pattern: event(dependency_request, resource) event(inventory, resource not within [inventory list])	Install missing resource
mismatch reso	ease level of one or more ources associated with this ptom are not what was	Filter pattern: event(wrong_release)	Update resource to require release

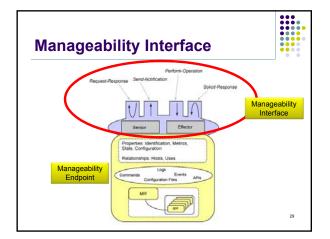


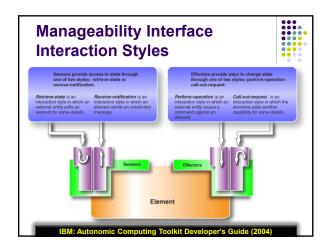
Linking AM and ME using Standardized Web Services

• MOWS

 OASIS: Web Services Distributed Management: Management of Web Services (WSDM-MOWS) 1.1 OASIS Standard (2006)


- WUWS
 - OASIS: Web Services Distributed Management: Management Using Web Services (WSDM-MUWS) 1.1 OASIS Standard (2006)
- AC and Standardized WS
 - Kreger, H., Studwell, T.: Autonomic Computing and Web Services Distributed Management (2005)
- All leading system management suppliers participated in this committee




Manageability Endpoint and Interface Manageability Endpoint (ME) A manageability endpoint is the component in a system that exposes the state and management operations for a resource in the system. An autonomic manager communicates with a manageability endpoint through the manageability interface.

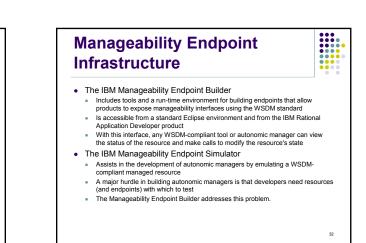
- Manageability Interface (MI)
 - A manageability endpoint is the implementation of the manageability interface for a specific manageable resource or a set of related manageable resources.
- · Standards-based management interfaces and data formats

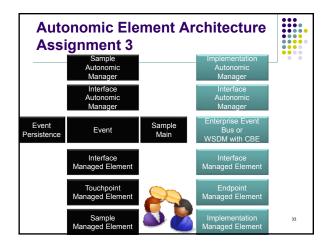
IBM: An Architecture Blueprint for Autonomic Computing, 4th Ed. 2006

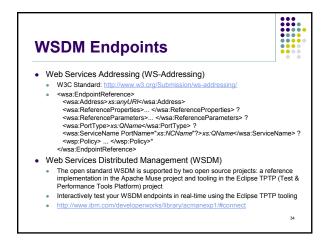
Manageability Interface Interaction Styles

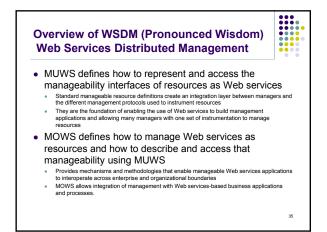
Sensor retrieve-state

- Used by an AM to query state information from an ME
- The AM asks for information and the ME synchronously returns it


Sensor receive-notification


A ME uses this style to asynchronously send event information to an AM
 Effector perform-operation

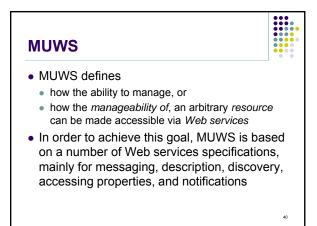

- Used by an AM to issue a command to an ME
- Used by an Aim to issue a command to an ME
 Used to change states or properties in the endpoint

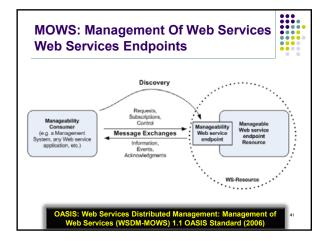

Effector call-out-request

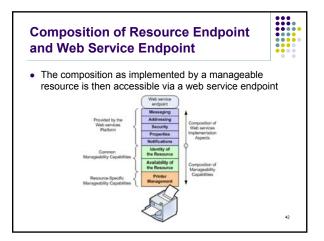
- nector can-out-request
- Used by a ME to consult with an external entity before taking certain actions—to check what changes are allowed prior to changing values
- Used to gather information from an AM before making a change
 - Used to gather information from an Aw before making a change

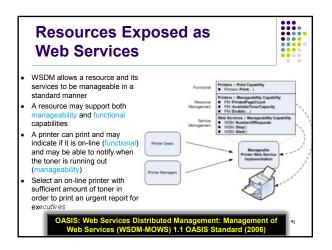
- Architectural objectives
 - Resource oriented
 - Implementation isolation
 - Composeability of services
 - Model agnostic
 - Enabling inspection

WSDM Architectural Objectives

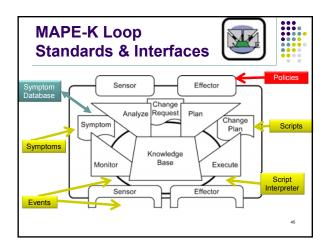

- Resource oriented
 - Historically, managers have accessed resources through management agents running on the resource.
 - By describing and offering resource access interfaces for resources directly rather than through intermediaries, WSDM makes resources Web services which can now participate directly in a service oriented architecture and business processes.
- Implementation isolation
 - Isolates manageable resources access from their manageable resource implementations.

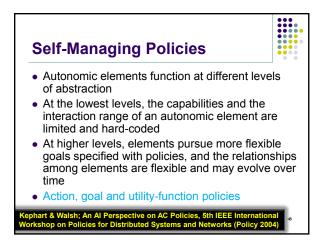


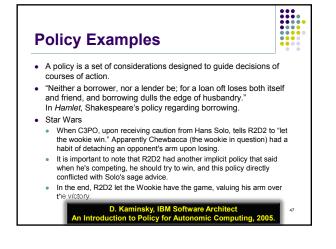

- Enabling inspection
- enables inspection (or discovery) of resource interfaces (properties, operations and events) at design time and run time

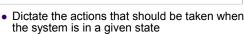

MOWS: Management Of Web Services Web Services Endpoints

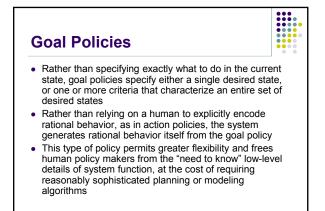
- Web services are an integral part of the IT landscape
- Autonomic managers are often used to mange web services
- Web services can be used by autonomic managers to communicate with managed elements
- To manage a web services, one needs to manage the web services endpoints
- The WSDM-MOWS specification addresses the management of the web services endpoints using web services protocols











Action Policies

- IF (condition) THEN (action)
 - where the condition specifies either a specific state or a set of possible states that all satisfy the given condition
- Note that the state that will be reached by taking the given action is not specified explicitly
- Policy author knows which state will be reached upon taking the recommended action and deems this state more desirable than states that would be reached via alternative actions

Utility-Function Policies An objective function that expresses the value of each possible state • Generalized goal policies Instead of performing a binary classification into desirable versus undesirable states, they ascribe a real-valued scalar desirability to each state Because the most desired state is not specified in advance, it is computed on a recurrent basis by selecting the state that has the highest utility from the present collection of feasible states

- Provide more fine-grained and flexible specification of behavior than goal and action policies
- Allow for unambiguous, rational decision making by specifying the appropriate tradeoff
- Preferences are difficult to elicit and specify

s for Dis

ited Syste

ns and Ne