
Welcome to

SENG 480B / CSC 485A / CSC 586A

Self-Adaptive and

Self-Managing Systems

Dr. Hausi A. Müller

and Lorena Castañeda

Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a

http://courses.seng.uvic.ca/courses/2015/summer/csc/485a

http://courses.seng.uvic.ca/courses/2015/summer/csc/586a
1

Announcements

Monday, July 6
Lorena Castañeda - Models at runtime

Thursday, July 9
Hausi Müller

Friday, July 10
Assignment 3 due

Monday, July 13
Lorena Castañeda - Models at runtime

Assignment 3 demos (Time TBA)

Thursday, July 16
Midterm

2

3

Reading Assignments

• “Models@run.time” Blair et al. 2009 http://dx.doi.org/10.1109/MC.2009.326

• “Models@run.time to Support Dynamic Adaptation” Morin et al. 2009

http://dx.doi.org/10.1109/MC.2009.327

• “The role of models@run.time in supporting on-the-fly interoperability”

Bencomo et al. 2013 http://link.springer.com/article/10.1007%2Fs00607-

012-0224-x

• “Living with uncertainty in the age of runtime models” Holger Giese et al.

2014 http://link.springer.com/chapter/10.1007%2F978-3-319-08915-7_3

Other reading material
Models@run.time Foundations, Applications, and Roadmaps

Editors: Bencomo, N., France, R.B., Cheng, B.H.C., Aßmann, U.

http://www.springer.com/us/book/9783319089140

http://link.springer.com/article/10.1007%2Fs00607-012-0224-x

Definitions

4

A model is a form of representation of an original. It

comprises three elements: the original (factual or

envisioned), a purpose, and an abstraction function to map

the model with the original [Giese 2014]

v = v0 + at

Definitions

5

A software model is an abstraction of a system often

associated with design time activities such as

documentation and analysis [Castaneda 2014]

What are problems of software

models in modern software?

6

Model at runtime - MART
(models@run.time, runtime models)

8

Models at runtime (MART)
 represent the system’s complete environment (possibly more

than one MART for a system), up-to-date information (i.e.,

context, users, and requirements)

 is accessible at runtime by the system, available in the form of

software artefacts

 the system must be causally connected, are implemented to

support runtime events

 manipulable and capable to evolve during execution time

Why MART?

 MART are implemented to deal with runtime concerns for

complex systems, such as self-adaptive software

systems

 Various purposes including simulating runtime

environments, monitoring, policy checking, error

handling, and supporting systems adaptation

requirements

9

10

http://pacman.elstonj.com/

https://www.youtube.com/watch?v=7JHtX2JwZAY

Roomba Pac-Man

https://www.youtube.com/watch?v=7JHtX2JwZAY

Models differ in their purpose:

1. Requirements (Functional and non-functional)

2. Physical space (walls, cherries, initial place, …)

3. Behaviour of the roombas based on their roles (ghosts

and pac-man)

Lets talk about the models for
this scenario

Ghosts

These are autonomous systems that:

Search

Avoid collisions

Track

Requirements – GORE

 GORE: Goal-Oriented Requirements Engineering

 Elements: goals, soft-goals, tasks, resources, actors,

actor boundaries, links …

i* Framework is the modelling language suitable

for goal models

E. Yu, "Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering", 1997 IEEE

Simple version of a ghost
GORE

 G1

Search

T1.1 Up

T1.2

Down

T1.3 Left

T1.4

Right

G1.1

Chase

G1.2

Run

T1 Move

G2. Avoid

Collision

T2 Track

T3 Path

Requirements – KAOS

 KAOS: Keep All Objectives Satisfied

 Extension of GORE with AND / OR operations

Metamodel of the Elements in

KAOS

 A MART is available as a software artefact

 Transition between the modelling notation and a piece of

software

 KAOS has a metamodel, but other representations can be

used for goal models such as graphs (RDF) or Java

transformations (i*)

Physical space – Structural

context (Grid map)

 To represent the environment in which the robot is

moving.

 Instances of the model can be enhanced with real world

data using other sensors.

Behavioural – FSM

 Finite State Machine is a model to describe the behaviour

of the system. In this case, the behaviour of each robot

 Lets consider the states of a ghost
 Searching for pac-man (initial)

 Tracking pac-man

 Running from pac-man

 Stop (end of the game)

 The transitions
 Pac-man found

 Eaten by pac-man

 Kill pac-man

FSM of a ghost

Searching

up, down, left, rigth

Tracking

follow

Running

path

[init game]

[pac-man found]

[eaten by pac-man]

[pac-man powered up]

[pac.man killed]

[pac-man powered up]

Levels of abstraction

 A model can represent different levels of abstraction

 Abstraction implies to eliminate characteristics that are

irrelevant for the purpose of the model
 E.g., how much of the physical space of the real world do we need

to model for the rommba pac-man example?

 But MART should be causally connected
 Hierarchical State Machine (HSM) provide a comprehensive view

of models and their levels of abstractions

Properties of the MART

 MART properties are relevant at design-time as well as at

run-time

 Validity: the model reflects correctly its original
 Keep in mind the abstraction level when defining “correctly”

 Accuracy: measures the predictions of the model about its

original.

 Precision: measures how small the variation is in the

prediction made by the model

Uncertainty

 MART deal with the uncertainty of the context which

makes predictions a real challenge

 Dynamic models increase the level of uncertainty over

time because of the “possible” continuous updates in

order to reflect changes in the original.

Uncertainty within a model is the difference

between the amount of information about the

original and the information that the model could, in

theory, represent about the original at a certain

instant in the system lifetime [Giese 2014]

Next class

 The feedback loop in systems with runtime models

