
Welcome to

SENG 480B / CSC 485A / CSC 586A

Self-Adaptive and

Self-Managing Systems

Dr. Hausi A. Müller

and Lorena Castañeda

Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a

http://courses.seng.uvic.ca/courses/2015/summer/csc/485a

http://courses.seng.uvic.ca/courses/2015/summer/csc/586a
1

Announcements

Monday, July 6
Lorena Castañeda - Models at runtime

Thursday, July 9
Hausi Müller

Friday, July 10
Assignment 3 due

Monday, July 13
Lorena Castañeda - Models at runtime

Assignment 3 demos (Time TBA)

Thursday, July 16
Midterm

2

3

Reading Assignments

• “Models@run.time” Blair et al. 2009 http://dx.doi.org/10.1109/MC.2009.326

• “Models@run.time to Support Dynamic Adaptation” Morin et al. 2009

http://dx.doi.org/10.1109/MC.2009.327

• “The role of models@run.time in supporting on-the-fly interoperability”

Bencomo et al. 2013 http://link.springer.com/article/10.1007%2Fs00607-

012-0224-x

• “Living with uncertainty in the age of runtime models” Holger Giese et al.

2014 http://link.springer.com/chapter/10.1007%2F978-3-319-08915-7_3

Other reading material
Models@run.time Foundations, Applications, and Roadmaps

Editors: Bencomo, N., France, R.B., Cheng, B.H.C., Aßmann, U.

http://www.springer.com/us/book/9783319089140

http://link.springer.com/article/10.1007%2Fs00607-012-0224-x

Definitions

4

A model is a form of representation of an original. It

comprises three elements: the original (factual or

envisioned), a purpose, and an abstraction function to map

the model with the original [Giese 2014]

v = v0 + at

Definitions

5

A software model is an abstraction of a system often

associated with design time activities such as

documentation and analysis [Castaneda 2014]

What are problems of software

models in modern software?

6

Model at runtime - MART
(models@run.time, runtime models)

8

Models at runtime (MART)
 represent the system’s complete environment (possibly more

than one MART for a system), up-to-date information (i.e.,

context, users, and requirements)

 is accessible at runtime by the system, available in the form of

software artefacts

 the system must be causally connected, are implemented to

support runtime events

 manipulable and capable to evolve during execution time

Why MART?

 MART are implemented to deal with runtime concerns for

complex systems, such as self-adaptive software

systems

 Various purposes including simulating runtime

environments, monitoring, policy checking, error

handling, and supporting systems adaptation

requirements

9

10

http://pacman.elstonj.com/

https://www.youtube.com/watch?v=7JHtX2JwZAY

Roomba Pac-Man

https://www.youtube.com/watch?v=7JHtX2JwZAY

Models differ in their purpose:

1. Requirements (Functional and non-functional)

2. Physical space (walls, cherries, initial place, …)

3. Behaviour of the roombas based on their roles (ghosts

and pac-man)

Lets talk about the models for
this scenario

Ghosts

These are autonomous systems that:

Search

Avoid collisions

Track

Requirements – GORE

 GORE: Goal-Oriented Requirements Engineering

 Elements: goals, soft-goals, tasks, resources, actors,

actor boundaries, links …

i* Framework is the modelling language suitable

for goal models

E. Yu, "Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering", 1997 IEEE

Simple version of a ghost
GORE

 G1

Search

T1.1 Up

T1.2

Down

T1.3 Left

T1.4

Right

G1.1

Chase

G1.2

Run

T1 Move

G2. Avoid

Collision

T2 Track

T3 Path

Requirements – KAOS

 KAOS: Keep All Objectives Satisfied

 Extension of GORE with AND / OR operations

Metamodel of the Elements in

KAOS

 A MART is available as a software artefact

 Transition between the modelling notation and a piece of

software

 KAOS has a metamodel, but other representations can be

used for goal models such as graphs (RDF) or Java

transformations (i*)

Physical space – Structural

context (Grid map)

 To represent the environment in which the robot is

moving.

 Instances of the model can be enhanced with real world

data using other sensors.

Behavioural – FSM

 Finite State Machine is a model to describe the behaviour

of the system. In this case, the behaviour of each robot

 Lets consider the states of a ghost
 Searching for pac-man (initial)

 Tracking pac-man

 Running from pac-man

 Stop (end of the game)

 The transitions
 Pac-man found

 Eaten by pac-man

 Kill pac-man

FSM of a ghost

Searching

up, down, left, rigth

Tracking

follow

Running

path

[init game]

[pac-man found]

[eaten by pac-man]

[pac-man powered up]

[pac.man killed]

[pac-man powered up]

Levels of abstraction

 A model can represent different levels of abstraction

 Abstraction implies to eliminate characteristics that are

irrelevant for the purpose of the model
 E.g., how much of the physical space of the real world do we need

to model for the rommba pac-man example?

 But MART should be causally connected
 Hierarchical State Machine (HSM) provide a comprehensive view

of models and their levels of abstractions

Properties of the MART

 MART properties are relevant at design-time as well as at

run-time

 Validity: the model reflects correctly its original
 Keep in mind the abstraction level when defining “correctly”

 Accuracy: measures the predictions of the model about its

original.

 Precision: measures how small the variation is in the

prediction made by the model

Uncertainty

 MART deal with the uncertainty of the context which

makes predictions a real challenge

 Dynamic models increase the level of uncertainty over

time because of the “possible” continuous updates in

order to reflect changes in the original.

Uncertainty within a model is the difference

between the amount of information about the

original and the information that the model could, in

theory, represent about the original at a certain

instant in the system lifetime [Giese 2014]

Next class

 The feedback loop in systems with runtime models

