Welcome to
SENG 480B / CSC 485A / CSC 586A

Self-Adaptive and
Self-Managing Systems

Dr. Hausi A. Muller

and Lorena Castaneda
Department of Computer Science
University of Victoria

http://courses.senqg.uvic.ca/courses/2015/summer/seng/480a
http://courses.senqg.uvic.ca/courses/2015/summer/csc/485a
http://courses.senqg.uvic.ca/courses/2015/summer/csc/586a

1

Announcements

eMonday, July 6
eLorena Castaneda - Models at runtime
eThursday, July 9
eHausi Muller
eFriday, July 10
eAssignment 3 due
eMonday, July 13
eLorena Castaneda - Models at runtime
eAssignment 3 demos (Time TBA)

eThursday, July 16

eMidterm

Reading Assignments

“Models@run.time” Blair et al. 2009 htip://dx.dol.org/10.1109/MC.2009.326
“Models@run.time to Support Dynamic Adaptation” Morin et al. 2009
http://dx.doi.org/10.1109/MC.2009.327

“The role of models@run.time in supporting on-the-fly interoperability”
Bencomo et al. 2013 http://link.springer.com/article/10.1007%2Fs00607-
012-0224-x

“Living with uncertainty in the age of runtime models” Holger Giese et al.
2014 http://link.springer.com/chapter/10.1007%2F978-3-319-08915-7 3

S Models@run.time

Other reading material

eModels@run.time Foundations, Applications, and Roadmaps
Editors: Bencomo, N., France, R.B., Cheng, B.H.C., ABmann, U.
http://www.springer.com/us/book/9783319089140

http://link.springer.com/article/10.1007%2Fs00607-012-0224-x

Definitions

eA model is a form of representation of an original. It
comprises three elements: the original (factual or
envisioned), a purpose, and an abstraction function to map

the model with the original [Giese 2014]

Definitions

oA software model is an abstraction of a system often
associated with design time activities such as
documentation and analysis [castaneda 2014]

@postcode - o

|&pemail - strin

®addUs er) - bool
SaditUs er() - bool

SsetUsem:

“$3ddBooking()
SoditBooking()
SremoveSaoking(
n| ®loadBookings()
SgueryBaokings(
SindBooking) - sting
getReference() stng
setRef e

®addShow) - bool
et Show() - bool

ow) bool
9
ang) - void

Jn

Ticket

Hickethiame

Fulill Book
Order

s sting) o
[@rocaii

@ypaymant

I o, Venue

S apmel) : o @enetiome - stng

e el hos & sruslocstin - siing

Sgot

BickatType st

SaddTicketType(
SaditTicketType(
SremaveTicketType() - boo!
SgetTicketType() string
®setTicketType(str - string) *

10 Supplier

{ Happy Customer

What are problems of software
models In modern software?

Model at runtime - MART

(models@run.time, runtime models)

Models at runtime (MART)

0 represent the system’s complete environment (possibly more
than one MART for a system), up-to-date information (i.e.,
context, users, and requirements)

Q Is accessible at runtime by the system, available in the form of
software artefacts

0 the system must be causally connected, are implemented to
support runtime events

0 manipulable and capable to evolve during execution time

Why MART?

a0 MART are implemented to deal with runtime concerns for
complex systems, such as self-adaptive software
systems

a Various purposes including simulating runtime
environments, monitoring, policy checking, error
handling, and supporting systems adaptation
requirements

Roomba Pac-Man

http://pacman.elstonj.com/

https://www.youtube.com/watch?v=7JHtX2JwZAY

10

https://www.youtube.com/watch?v=7JHtX2JwZAY

Lets talk about the models for
this scenario

Models differ in their purpose:

1. Requirements (Functional and non-functional)

2. Physical space (walls, cherries, initial place, ...)

3. Behaviour of the roombas based on their roles (ghosts
and pac-man)

Ghosts

These are autonomous systems that:

Avoid collisions

Track

Search

Requirements — GORE

o GORE: Goal-Oriented Requirements Engineering
o Elements: goals, soft-goals, tasks, resources, actors,

actor boundaries, links ...

Pt
_____ -
N ‘\ Means-Ends Link Decompadsition Link
. 'D._____
r -

\‘ j_’_,ﬁ —
! Actor Boundary | " Dependency Link
! I
‘ ' . = 0 .
\, ;. I* Framework is the modelling language suitable
Sreoe for goal models

E. Yu, "Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering”, 1997 IEEE

Simple version of a ghost
GORE

Requirements — KAOS

a KAOS: Keep All Objectives Satisfied
o Extension of GORE with AND / OR operations

G1
~ Read p;:i;m
\@nmr L‘Ja
AMND G1.4
/ 5 G111) / 11 e Low energy
R elect pucks Transport ~AND — consumplion

~Tdentify puck pucks —

N pnsmnn G1.1.5 B G1.3
Gi1.1.2 . Release High

Reach puck puck throughput

- - : Heleas>
‘/fLeﬂ _F/I — f ann{?ﬁﬁk to Gi.2.2
U DUWD puc G1. 2.1 Charge
— \.\ destination Reach

ﬁ\ - on H._ht charge point
Q"“l‘if’ (UF'J <g> (pr\; L ORRight)

@) o) o S @5;;@
2 Gen) Charge

Metamodel of the Elements In

KAOS

o A MART is avallable as a software artefact
Transition between the modelling notation and a piece of

Q

software

KAOS has a metamodel, but other representations can be

used for goal models
transformations (i*)

Goal

superGoal [1]

superGoal [1]

- name: siring
- priority: int
/{Lbeoals 1.7

GoalRefinement

- type: TypeEnum

OpRefinement
- type: TypeEnum

operations [1...7]

TypeEnum
- AND Operation
-OR - name: string

Physical space — Structural
context (Grid map)

o To represent the environment in which the robot is
moving.

a Instances of the model can be enhanced with real world

data using other sensors.

-
Robot Map 1 8
= 13 O " O
-energy : int {0..100} i) e
-x :int {1..20} %_ . S i
: B I 18 free} gy
=y tint {1..15} fsnf.f'f.;,,, == 7 parcent} ST —I_ OO
position() : x,y _|- Eﬁﬁg;ﬁ;:ﬁﬁ?ﬁ o 3
up(). down(). left(). right()e- _ . |
take(lo — ‘consirants: i - P
— = = — — __ | |{targetfieid confains puck} * s

fanergy == 10 percenf — | I vy

{energy is reduced _ - cam ——

during opera fi 0 'r"

A
=< gnumeration == << enumeration == F_ |d I
e —_— —_—
Obstacle Type 5 j |'— 5

empty | | nomm al =% tint {1..20} - =1
door_open charging_paint -y cint {1..15} | | |
door_closed area_packaqging obs : Obstacle
wall area_sorting puck : boolean
robot area_delivery type : Type

Behavioural — FSM

a Finite State Machine is a model to describe the behaviour
of the system. In this case, the behaviour of each robot

a Lets consider the states of a ghost
= Searching for pac-man (initial)
= Tracking pac-man
= Running from pac-man
= Stop (end of the game)

a The transitions
= Pac-man found

= Eaten by pac-man
= Kill pac-man

FSM of

a ghost

Tracking _
[pac.man killed]

follow

[pac-man found]

Searching W

p
Lup, down, left, rigthJ [pac-man powered up] @

[pac-man powered up]

Running

[eaten by pac-man]
path

Levels of abstraction

Q

Q

A model can represent different levels of abstraction
Abstraction implies to eliminate characteristics that are

irrelevant for the purpose of the model
E.g., how much of the physical space of the real world do we need
to model for the rommba pac-man example?

But MART should be causally connected
Hierarchical State Machine (HSM) provide a comprehensive view
of models and their levels of abstractions

Properties of the MART

o MART properties are relevant at design-time as well as at
run-time

o Validity: the model reflects correctly its original
« Keep in mind the abstraction level when defining “correctly”

o Accuracy: measures the predictions of the model about its
original.

a Precision: measures how small the variation is in the
prediction made by the model

Uncertainty

Uncertainty within a model is the difference
between the amount of information about the

original and the information that the model could, In
theory, represent about the original at a certain
Instant in the system lifetime [Giese 2014]

o MART deal with the uncertainty of the context which
makes predictions a real challenge

o Dynamic models increase the level of uncertainty over
time because of the “possible” continuous updates in
order to reflect changes in the original.

Next class

a The feedback loop in systems with runtime models

D activity
model

— 2 ctivity flow

_ » read or write
(one-way access)

< — — —» read and write
(full access)

> Plan

> Analyze >
‘\

hY
Y

M@RT

/"
.
/s
> Monitor > Execute
W T
. “
\ Y

' s Environment : ‘

\

~

t N
A =
l Requirements ™ -

I/

A5

other stakeholder

~

-~

. Context

System

