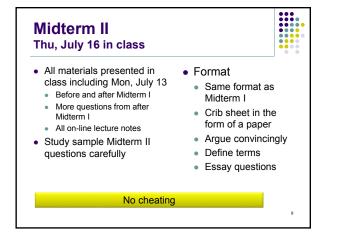
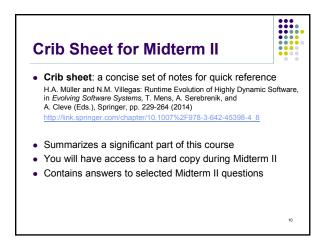
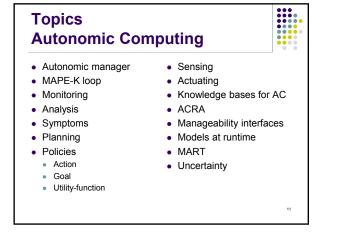


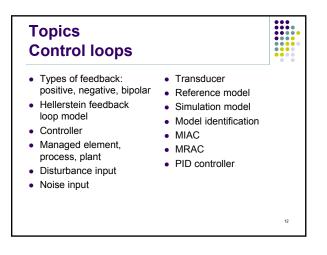
Graduate Student Research Paper Presentations

- · Brun, Y., Di Marzo Serugendo, G., Gacek, C. Gese, H. Ksenle, H.M., Litoiu, M., Muller, H.M., Pezzè, M., Shaw, M., Immerian Self-Adaptive Systems Unreader Technika (Lions, Software Enniversing for Self-Adaptive Systems, pp. 2020) — Preventation by Smark Avora KluxAboo Candhi July 27 Gearlan, D., Cheng, S. W., Huans, A.-C., Schmeid, S., Sternikote, P., Bandow, Architecture-Based Self-Adaptivity Record be Informaticurus, BIE Communic 37(10):453-42 (2020) — Preventation by Stephan Heinemann and Wastern Records (Enforcement Self). 2020.
- Ullah: July 27 Oreizy, P., Medvidovir, N., Taylor, R.N. Runtime Software Adaptation: Framework, Approaches, and Styles. In: ACM/IEE
- Oracy, T., Metridovic, K., Lador, K.N., Burume Sattware Addatation. Hamework, Approaches, and Sytes, In: ACM/ILLI International Conference on Software Transmession (SCI 2008), pp. 899–910 (2008) Presentation by Sumit Kadyan and Additya Rathakrishnar. July 27 Kamer, L., Maene, L., Self-Maaneel Systems, An Architectural Challenge. In: ACM /IEEE International Conference on Software. Engineering. 2007 Entrane of Software Engineering (ICSE), pp. 259–268 (2007) Presentation by Ernest Aaron
- and Harshit Jain : July 27




Guidelines for Grad Student Presentations

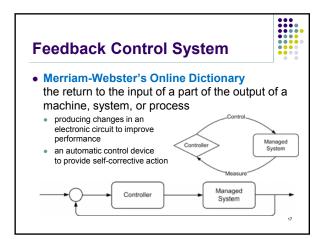

- Format of presentation
 - Presentation 10 mins Q&A 5 mins
 - Practice talk (!!)
 - Practice of the best of all • instructors
- Slides
 - High quality and polished Submit slides by July 24 to •
 - instructor for approval
 - Submit final slides 1 day after presentation for posting on website

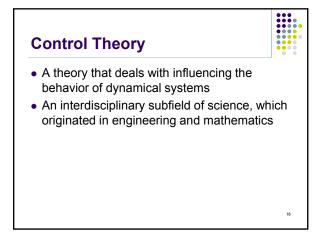

- Talk outline
 - Motivation
 - Problem
 - Approach
 - Contributions of the paper Relation to what we learned .
- in the course so far Assessment
 - All students have to fill out • an evaluation form Counts towards class
 - participation

			1
Evaluator's name:			
iraduate students:]
guality of presentation]
id I learn something? Did the presentation stimulate my interest?	5]
to I know now what the paper is all about?	5		
loes the presenter know the subject well?	5		
resentation style: main points reiterated; positive attitude; excited about the subject.	5		
low did the presenter perform in the Q&A session?	5		
Subtotal	25		1

Interesting Potential Midterm II Questions

- · Design a concrete and viable
 - action policy
 - goal policy
 - utility-function policy
 - Design a Green utility-function policyHow can cost be integrated into a utility-function?
 - How can cost be integrated into a utility-it
- PID controllers
- Explain the notion of adaptive control
 - MRAC architecture
 - MIAC architecture
 - How do they relate?
 - How do they relate to ACRA?

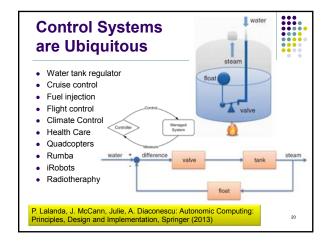

Interesting Potential Midterm II Questions What is the difference between anticipated and unanticipated adaptation? What is the difference between fully autonomous systems and human-in-the-loop systems? What is the difference between design-time and run-time adaptation? What are self-* properties?


- What are requirements at runtime?
- What are models at runtime (MART)?
- What is runtime V&V?

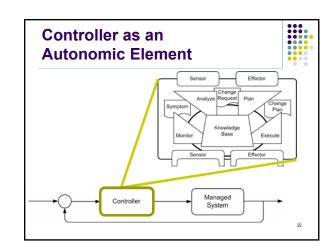
Interesting Potential Midterm II Questions

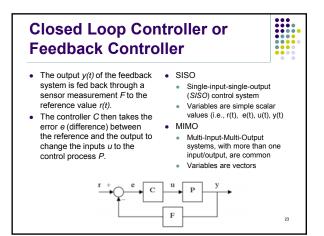
- What aspects of the environment should a self-adaptive system monitor?
 - The system cannot monitor everything in the environment
 - What aspects of the environment are truly relevant?
- How should a self-adaptive system react if it detects changes in the environment?
 - Maintain high-level goals
 - Relax non-critical goals to allow the system a degree of flexibility
 - Goal trade-off analysis

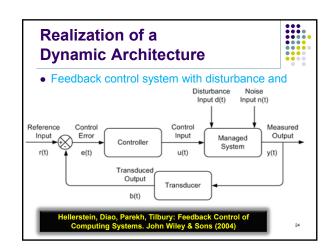
Unit	Undergrads	Grads	Remarks	••	
A1	Weight 12%	Weight	Due Fri, May 29, 2015		
A2	12%	9%	Due Fri, June 19, 2015		
A3	12%	9%	Due Fri, July 10, 2015		
A4	12%	9%	Due Fri, July 31, 2015		
Grad Project		12%	Due Sat. July 25, 2015		
Participation and 7% 7% presentation		7%	Only graduate students are required to give a presentation towards the end of the course.		
Midterm 1 20% 20%		20%	June 4, 2015 in class. Closed books, closed notes, no phones, no computers, no calculators, no gadgets.		
Midterm 2	25%	25%	July 16, 2015 in class. Closed books, closed notes, no phones, no computers, no calculators, no cadgets.		
Total	100%	100%	Have a great course!		

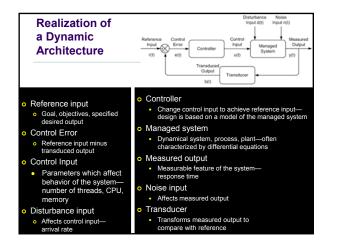


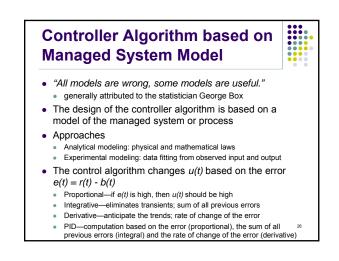
Origins of Control Theory

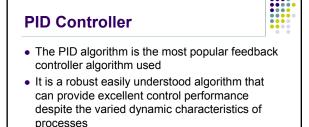

- Control systems date back to antiquity
- James Maxwell (1831-1879) started the field in 1868 analyzing the dynamics analysis of the centrifugal governor

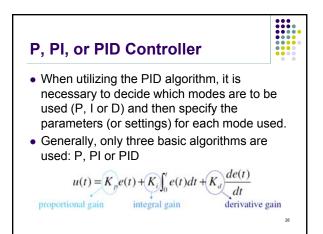

- Routh (1831-1907) abstracted Maxwell's results for the general class of linear systems in 1877
- Hurwitz (1859-1919) analyzed system stability using differential equations in 1877
- Laplace (1749-1827) invented the Z-transform used to solve discrete-time control theory problems. The Z-transform is a discretetime equivalent of the Laplace transform.
- Alexander Lyapunov (1857–1918) developed stability theory.
- Harry Nyquist (1889–1976), developed the Nyquist stability criterion for feedback systems in the 1930s.

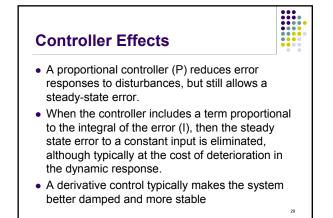


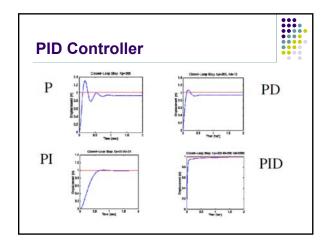

Control System Goals: Self-Management

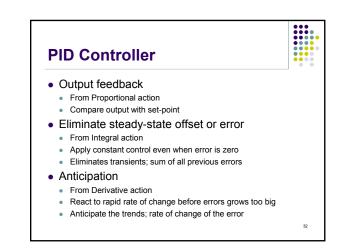

- Regulation
 - Thermostat, target service levels
- Tracking
 - Robot movement
 - Adjust TCP window to network bandwidth
- Optimization
 - Best mix of chemicals
 - Minimize response times

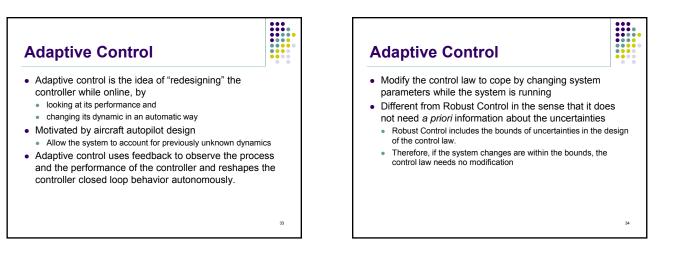




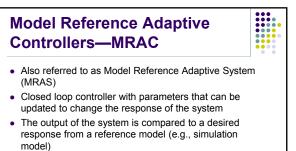




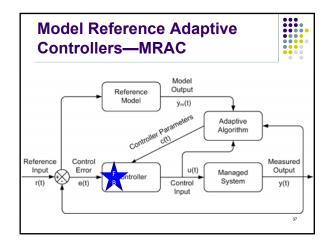

- PID algorithm consists of three basic modes:
 - Proportional mode
 - Integral mode
 - Derivative mode

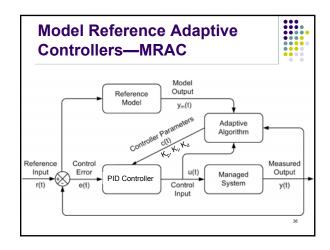


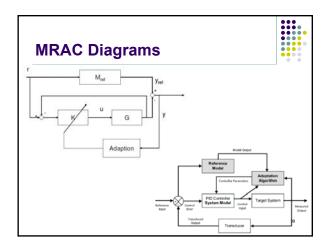
Closed-Loop Response				
	Rise time	Max overshoot	Settling time	Steady- state error
Р	Decrease	Increase	Small change	Decrease
T	Decrease	Increase	Increase	Eliminate
D	Small change	Decrease	Decrease	Small change
				31



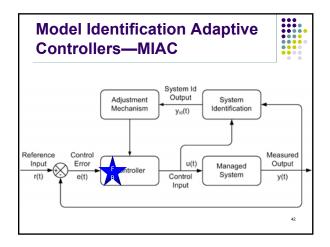
System Identification Model Building

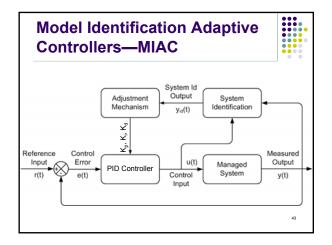

- Mathematical tools and algorithms to build dynamical models from measured data
- A dynamical mathematical model in this context is a mathematical description of the dynamic behavior of a system or process in either the time or frequency domain
- Theories and processes
 - Physical
 - Computing
 - SocialEngineering
- BiologicalChemical

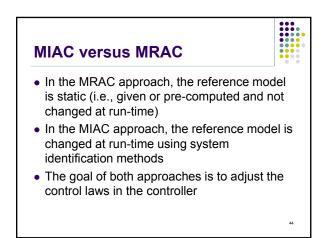

Economic


Therapeutic

- The control parameters are updated based on this error
- The goal is for the parameters to converge to ideal values that cause the managed system response to match the response of the reference model.






Model Identification Adaptive Controllers—MIAC

Perform system identification while system is running to modify the control laws

- Create model structure and perform parameter estimation using the Least Squares method
 Continue adaptive approximates
- Cautious adaptive controllers
 - Use current system identification to modify control law, allowing for system identification uncertainty
- Certainty equivalent adaptive controllers
- Take current system identification to be the true system, assume no uncertainty
 Nonparametric adaptive controllers
- Parametric adaptive controllers

