

Welcome to SENG 480B / CSC 485A / CSC 586A Self-Adaptive and Self-Managing Systems

Dr. Hausi A. Müller and Lorena Castañeda Department of Computer Science University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a http://courses.seng.uvic.ca/courses/2015/summer/csc/485a http://courses.seng.uvic.ca/courses/2015/summer/csc/586a

Announcements

- Midterm II
 - Thu, July 16 in class
- A4
 - Posted by Tuesday, July 14
 - Due Friday, July 31
- A3
 - Due Friday, July 10
 - July 13 Part 2 demos before and after class Sign up for demos (!)

- A2 grading questions
 - Ron Desmarais
 - Mon, July 13
 4-5 pm in ECS 415
- Grad project
 - Posted
 - Due Friday, July 24
 - Presentations Mon, July 27 and Thu, July 30
 - All students are expected to assess presentation as part of course participation mark

July Calendar

- July 9—MRAC and MIAC class
- July 10—A3 due
- July 13—MART class continued and A3 P2 demos
- July 16—Midterm II in class
- July 20/23—Characterizing SAS Problems
- July 24 Grad Presentation Slides due
- July 27/30—Grad Presentations
 - Non-presenters evaluate presentations
- July 31 A4 due

Demo details - July 13, 2015

ECS 660 [9:30 - 11:30]

The demos start at 10:00, the room is available to students from 9:45 to get the set up ready.

ECS 418 [12:15 - 12:55]

The demos are 5 min long. there is 5 min extra between demos to allow groups' set up given the restrictions of the space.

Email submit@rigiresearch.com to take a time slot, these will be assigned in order of arrival

NOTE: Students with classes in the morning will have preference for section 4 which is during the class time. Please be considerate about this restriction to your fellow classmates and take a morning time slot if you don't have class (or other impediment) in the morning

Place	Section	Time	No. Groups
ECS 660	1A	10:00 - 10:05	[1]
	1B	10:05 - 10:10	[1]
	1C	10:10 - 10:15	[1]
	1D	10:15 - 10:20	[1]
	2A	10:25 - 10:30	[1]
	2B	10:30 - 10:35	[1]
	2C	10:35 - 10:40	[1]
	2D	10:40 - 10:45	[1]
	3A	10:50 - 10:55	[2]
	3B	10:55 - 11:00	[2]
	3C	11:00 - 11:05	[2]
	3D	11:05 - 11:10	[2]
ECS 418	4A	12:15 - 12:20	[1]
	4B	12:25 - 12:30	[1]
	4C	12:35 - 12:40	[1]
	4D	12:45 - 12:50	[1]
	4E	12:50 - 12:55	[1]

Assignment 3 Demos on Monday, July 13

Graduate Student Research Paper Presentations

- Brun, Y., Di Marzo Serugendo, G., Gacek, C. Giese, H. Kienle, H.M., Litoiu, M., Müller, H.M., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops. Software Engineering for Self-Adaptive Systems, pp. 48–70 (2009) — Presentation by Simar Arora Khushboo Gandhi: July 27
- <u>Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-Based Self-Adaptation with</u> <u>Reusable Infrastructure. IEEE Computer 37(10):46-54 (2004)</u> — Presentation by Stephan Heinemann and Waseem Ullah: July 27
- Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime Software Adaptation: Framework, Approaches, and Styles. In: ACM/IEEE International Conference on Software Engineering (ICSE 2008), pp. 899–910 (2008) — Presentation by Sumit Kadyan and Adithya Rathakrishnan: July 27
- Kramer, J., Magee, J.: Self-Managed Systems: An Architectural Challenge. In: ACM /IEEE International Conference on Software Engineering 2007 Future of Software Engineering (ICSE), pp. 259–268 (2007) — Presentation by Ernest Aaron and Harshit Jain : July 27

Graduate Student Research Paper Presentations

- <u>Aksanli, J. Venkatesh, L.Z., Tajana R.: Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data</u> <u>Centers. In: Proceedings 4th Workshop on Power-Aware Computing and System (HotPower 2011), Article 5 (2011)</u> – Presentation by Junnan Lu and Francis Harrison: July 30
- <u>Ebrahimi, S., Villegas, N.M., Müller, H.A., Thomo, A.: SmarterDeals: a context-aware deal recommendation system based</u> on the SmarterContext engine. CASCON 2012: 116–130 (2012) — Presentation by Carlene Lebeuf and Maria Ferman: July 30
- <u>Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A framework for evaluating quality-driven self-adaptive software systems. In: Proc. 6th Int. Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2011), pp. 80-89 (2011)</u> Presentation by Parminder Kaur and Navpreet Kaur: July 30
- Villegas, N.M., G. Tamura, H.A. Müller, L. Duchien, and R. Casallas, DYNAMICO: A reference model for governing control objectives and context relevance in self-adaptive software systems, in: R. de Lemos, H. Giese, H.A. Müller, and M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems, LNCS 7475, Dagstuhl Seminar 10431. Springer, pp. 265-293 (2013) — Presentation by Arturo Reyes Lopez and Babak Tootoonchi,: July 30

Guidelines for Grad Student Presentations

- Format of presentation
 - Presentation 10 mins
 - Q&A 5 mins
 - Practice talk (!!)
 - Practice of the best of all instructors
- Slides
 - High quality and polished
 - Submit slides by July 24 to instructor for approval
 - Submit final slides 1 day after presentation for posting on website

- Talk outline
 - Motivation
 - Problem
 - Approach
 - Contributions of the paper
 - Relation to what we learned in the course so far
- Assessment
 - All students have to fill out an evaluation form
 - Counts towards class participation

Evaluator's name: Graduate students: Quality of presentation Did I learn something? Did the presentation stimulate my interest? 5 Do I know now what the paper is all about? 5 Does the presenter know the subject well? 5 Presentation style: main points reiterated; positive attitude; excited about the subject. 5 How did the presenter perform in the Q&A session? 5 Subtotal 25 Other comments July 27 and July 30 CSC 586A Presentations

Midterm II

Thu, July 16 in class

- All materials presented in class including Mon, July 13
 - Before and after Midterm I
 - More questions from after Midterm I
 - All on-line lecture notes
- Study sample Midterm II questions carefully

- Format
 - Same format as Midterm I
 - Crib sheet in the form of a paper
 - Argue convincingly
 - Define terms
 - Essay questions

No cheating

Crib Sheet for Midterm II

• Crib sheet: a concise set of notes for quick reference

H.A. Müller and N.M. Villegas: Runtime Evolution of Highly Dynamic Software, in *Evolving Software Systems,* T. Mens, A. Serebrenik, and A. Cleve (Eds.), Springer, pp. 229-264 (2014) http://link.springer.com/chapter/10.1007%2F978-3-642-45398-4_8

- Summarizes a significant part of this course
- You will have access to a hard copy during Midterm II
- Contains answers to selected Midterm II questions

Topics Autonomic Computing

- Autonomic manager
- MAPE-K loop
- Monitoring
- Analysis
- Symptoms
- Planning
- Policies
 - Action
 - Goal
 - Utility-function

- Sensing
- Actuating
- Knowledge bases for AC
- ACRA
- Manageability interfaces
- Models at runtime
- MART
- Uncertainty

Topics Control loops

- Types of feedback: positive, negative, bipolar
- Hellerstein feedback loop model
- Controller
- Managed element, process, plant
- Disturbance input
- Noise input

- Transducer
- Reference model
- Simulation model
- Model identification
- MIAC
- MRAC
- PID controller

Interesting Potential Midterm II Questions

- Design a concrete and viable
 - action policy
 - goal policy
 - utility-function policy
 - Design a Green utility-function policy
 - How can cost be integrated into a utility-function?
- PID controllers
- Explain the notion of adaptive control
 - MRAC architecture
 - MIAC architecture
 - How do they relate?
 - How do they relate to ACRA?

Interesting Potential Midterm II Questions

- What is the difference between anticipated and unanticipated adaptation?
- What is the difference between fully autonomous systems and human-in-the-loop systems?
- What is the difference between design-time and run-time adaptation?
- What are self-* properties?
- What are requirements at runtime?
- What are models at runtime (MART)?
- What is runtime V&V?

Interesting Potential Midterm II Questions

- What aspects of the environment should a self-adaptive system monitor?
 - The system cannot monitor everything in the environment
 - What aspects of the environment are truly relevant?
- How should a self-adaptive system react if it detects changes in the environment?
 - Maintain high-level goals
 - Relax non-critical goals to allow the system a degree of flexibility
 - Goal trade-off analysis

Course Requirements

Unit	Undergrads	Grads	Remarks	
	Weight	Weight		
A1	12%	9%	Due Fri, May 29, 2015	
A2	12%	9%	Due Fri, June 19, 2015	
A3	12%	9%	Due Fri, July 10, 2015	
A4	12%	9%	Due Fri, July 31, 2015	
Grad Project		12%	Due Sat, July 25, 2015	
Participation and	7%	7%	Only graduate students are required to give a presentation	
presentation			towards the end of the course.	
Midterm 1	20%	20%	June 4, 2015 in class.	
			Closed books, closed notes, no phones, no computers, no	
			calculators, no gadgets.	
Midterm 2	25%	25%	July 16, 2015 in class.	
			Closed books, closed notes, no phones, no computers, no	
			calculators, no gadgets.	
Total	100%	100%	Have a great course!	

• All materials discussed in class are required for the midterm examinations

- Completing all midterms and assignments is required to pass the course
- Passing the midterms is not absolutely required to pass the course, but of course highly recommended
 16

Reading Assignments

"Models@run.time" Blair et al. 2009 <u>http://dx.doi.org/10.1109/MC.2009.326</u>
"Models@run.time to Support Dynamic Adaptation" Morin et al. 2009 <u>http://dx.doi.org/10.1109/MC.2009.327</u>

•"The role of models@run.time in supporting on-the-fly interoperability" Bencomo et al. 2013 <u>http://link.springer.com/article/10.1007%2Fs00607-012-0224-x</u>

•"Living with uncertainty in the age of runtime models" Holger Giese et al.

2014 http://link.springer.com/chapter/10.1007%2F978-3-319-08915-7_3

Other reading material

 Models@run.time Foundations, Applications, and Roadma Editors: Bencomo, N., France, R.B., Cheng, B.H.C., Aßmann http://www.springer.com/us/book/9783319089140

Model at runtime - MART

(models@run.time, runtime models)

Models at runtime (MART)

- represent the system's complete environment (possibly more than one MART for a system), up-to-date information (i.e., context, users, and requirements)
- is accessible at runtime by the system, available in the form of software artefacts
- the system must be causally connected, are implemented to support runtime events
- manipulable and capable to evolve during execution time

Uncertainty

Uncertainty within a model is the difference between the amount of information about the original and the information that the model could, in theory, represent about the original at a certain instant in the system lifetime [Giese 2014]

- MART deal with the uncertainty of the context which makes predictions a real challenge
- Dynamic models increase the level of uncertainty over time because of the "possible" continuous updates in order to reflect changes in the original.

MAPE-K feedback loop

Uncertainty

Uncertainty within a model is the difference between the amount of information about the original and the information that the model could, in theory, represent about the original at a certain instant in the system lifetime [Giese 2014]

- MART deal with the uncertainty of the context which makes predictions a real challenge
- Dynamic models increase the level of uncertainty over time because of the "possible" continuous updates in order to reflect changes in the original.

Epistemic uncertainty

•

•

•

The development-time models do not reflect the system or the context at execution time [Giese 2014] The design-time requirements do not reflect the real needs. The requirements were ambiguous The requirements (expectations) and the resulting software quality are in conflict Changes that might occur between development-time and deployment

Let's have a discussion

What are the problems of uncertainty in selfadaptive systems?

Do these capabilities help? How?

Context-awareness Situation-awareness

Requirements-awareness

MAPE-K to handle uncertainty?

MART at different levels

Monitor

- Measures raw data
- Update the corresponding MART

Uncertainty

By updating constantly the information

Sensors are limited to the accuracy and precision of their measurements

Analyze

- Interprets data from the monitor and the MART in order to analyze new and old information
- Verifies that the monitored information satisfies the requirements

Uncertainty

 By using strategies such as observing, learning and updating Analysis and diagnosis can be ambiguous and imprecise.

Plan

- Reads the runtime models enriched by the analysis and performs some reasoning to identify the best adaptations for the running system
- Records the system changes in the corresponding MART

Uncertainty

 The plan takes the form of a prediction of the future state of the system
 The precision and accuracy of the prediction depends of the uncertainty in the MART

Execute

- Applies the set of changes stored in the MART updated by the Planner Acts as the causal connection
- between the MART and the running system

Uncertainty

Applying changes requires an additional loop to verify inconsistencies \rightarrow Time is an issue The execution can not give any guarantees that the MART will be in complete sync with the system

M@RT

svsten

Analyze

Monitor

Some research questions

[Giese 2014]

- How can we determine the imprecision caused by temporal constrains / delays?
- Does the MAPE-K also need to adapt?
- How do MART represent what to monitor and how to do it?
- Does the perspective of "what is relevant" for the MART need to adapt at execution time?
- Should the criteria for decision-making in the analyser adapt itself?
- How does the planner handles strategies when uncertainty exist?
- Do temporal delays create an inconsistent view of the MART?
- How are MART affected by external influences outside the MAPE-K loop?

Summary Models at runtime (MART)

- Represent the system's up-to-date information
- ✓ Is accessible at runtime
- The system must be causally connected
- Manipulable and capable to evolve during execution time

Demo Section 4

ECS 418	4A	12:15 - 12:20	[1]: G11
	4B	12:25 - 12:30	[1]: G5
	4C	12:35 - 12:40	[1]: G12
	4D	12:45 - 12:50	[1]: G9
	4E	12:50 - 12:55	[1]: G14