
Welcome to

SENG 480B / CSC 485A / CSC 586A

Self-Adaptive and

Self-Managing Systems

Dr. Hausi A. Müller

and Lorena Castañeda

Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a

http://courses.seng.uvic.ca/courses/2015/summer/csc/485a

http://courses.seng.uvic.ca/courses/2015/summer/csc/586a
1

Announcements

• Midterm II

• Thu, July 16 in class

• A4

• Posted by Tuesday, July 14

• Due Friday, July 31

• A3

• Due Friday, July 10

• July 13 Part 2 demos
before and after class
Sign up for demos (!)

• A2 grading questions

• Ron Desmarais

• Mon, July 13
4-5 pm in ECS 415

• Grad project

• Posted

• Due Friday, July 24

• Presentations Mon, July 27
and Thu, July 30

• All students are expected to
assess presentation as part of
course participation mark

2

July Calendar

• July 9—MRAC and MIAC class

• July 10—A3 due

• July 13—MART class continued
and A3 P2 demos

• July 16—Midterm II in class

• July 20/23—Characterizing
SAS Problems

• July 24 Grad Presentation Slides due

• July 27/30—Grad Presentations
• Non-presenters evaluate presentations

• July 31 A4 due
3

NURSE LOG

4

Assignment 3

Demos on

Monday, July 13

Graduate Student
Research Paper Presentations

5

Graduate Student
Research Paper Presentations

6

Guidelines for
Grad Student Presentations

• Format of presentation
• Presentation 10 mins

• Q&A 5 mins

• Practice talk (!!)

• Practice of the best of all
instructors

• Slides
• High quality and polished

• Submit slides by July 24 to
instructor for approval

• Submit final slides 1 day after
presentation for posting on
website

• Talk outline
• Motivation

• Problem

• Approach

• Contributions of the paper

• Relation to what we learned
in the course so far

• Assessment
• All students have to fill out

an evaluation form

• Counts towards class
participation

7

8

July 27 and July 30 CSC 586A Presentations

Midterm II

Thu, July 16 in class

• All materials presented in
class including Mon, July 13

• Before and after Midterm I

• More questions from after
Midterm I

• All on-line lecture notes

• Study sample Midterm II
questions carefully

• Format
• Same format as

Midterm I

• Crib sheet in the
form of a paper

• Argue convincingly

• Define terms

• Essay questions

9

No cheating

Crib Sheet for Midterm II

• Crib sheet: a concise set of notes for quick reference
H.A. Müller and N.M. Villegas: Runtime Evolution of Highly Dynamic Software,
in Evolving Software Systems, T. Mens, A. Serebrenik, and
A. Cleve (Eds.), Springer, pp. 229-264 (2014)

http://link.springer.com/chapter/10.1007%2F978-3-642-45398-4_8

• Summarizes a significant part of this course

• You will have access to a hard copy during Midterm II

• Contains answers to selected Midterm II questions

10

http://link.springer.com/chapter/10.1007/978-3-642-45398-4_8

Topics
Autonomic Computing

• Autonomic manager

• MAPE-K loop

• Monitoring

• Analysis

• Symptoms

• Planning

• Policies
• Action

• Goal

• Utility-function

• Sensing

• Actuating

• Knowledge bases for AC

• ACRA

• Manageability interfaces

• Models at runtime

• MART

• Uncertainty

11

Topics
Control loops

• Types of feedback:
positive, negative, bipolar

• Hellerstein feedback
loop model

• Controller

• Managed element,
process, plant

• Disturbance input

• Noise input

• Transducer

• Reference model

• Simulation model

• Model identification

• MIAC

• MRAC

• PID controller

12

Interesting Potential
Midterm II Questions

• Design a concrete and viable
• action policy

• goal policy

• utility-function policy

• Design a Green utility-function policy

• How can cost be integrated into a utility-function?

• PID controllers

• Explain the notion of adaptive control
• MRAC architecture

• MIAC architecture

• How do they relate?

• How do they relate to ACRA?

13

Interesting Potential
Midterm II Questions

• What is the difference between anticipated and un-
anticipated adaptation?

• What is the difference between fully autonomous systems
and human-in-the-loop systems?

• What is the difference between design-time and run-time
adaptation?

• What are self-* properties?

• What are requirements at runtime?

• What are models at runtime (MART)?

• What is runtime V&V?

14

Interesting Potential
Midterm II Questions

• What aspects of the environment should a
self-adaptive system monitor?

• The system cannot monitor everything in the environment

• What aspects of the environment are truly relevant?

• How should a self-adaptive system react if it detects
changes in the environment?

• Maintain high-level goals

• Relax non-critical goals to allow the system a degree of
flexibility

• Goal trade-off analysis

15

Course Requirements

16

• All materials discussed in class are required for the midterm examinations

• Completing all midterms and assignments is required to pass the course

• Passing the midterms is not absolutely required to pass the course,
but of course highly recommended

17

Reading Assignments

•“Models@run.time” Blair et al. 2009 http://dx.doi.org/10.1109/MC.2009.326

•“Models@run.time to Support Dynamic Adaptation” Morin et al. 2009

http://dx.doi.org/10.1109/MC.2009.327

•“The role of models@run.time in supporting on-the-fly interoperability”

Bencomo et al. 2013 http://link.springer.com/article/10.1007%2Fs00607-012-

0224-x

•“Living with uncertainty in the age of runtime models” Holger Giese et al.

2014 http://link.springer.com/chapter/10.1007%2F978-3-319-08915-7_3

Other reading material

Models@run.time Foundations, Applications, and Roadmaps

Editors: Bencomo, N., France, R.B., Cheng, B.H.C., Aßmann, U.

http://www.springer.com/us/book/9783319089140

Model at runtime - MART
(models@run.time, runtime models)

18

Models at runtime (MART)
 represent the system’s complete environment (possibly more

than one MART for a system), up-to-date information (i.e.,

context, users, and requirements)

 is accessible at runtime by the system, available in the form

of software artefacts

 the system must be causally connected, are implemented to

support runtime events

 manipulable and capable to evolve during execution time

Uncertainty

• MART deal with the uncertainty of the context which makes

predictions a real challenge

• Dynamic models increase the level of uncertainty over time because of

the “possible” continuous updates in order to reflect changes in the

original.

Uncertainty within a model is the difference

between the amount of information about the

original and the information that the model could, in

theory, represent about the original at a certain

instant in the system lifetime [Giese 2014]

MAPE-K feedback loop

Extended MAPE-K

Collects

Raw

Data

Extended MAPE-K

Collects

Raw

Data

Analysis of

information

Extended MAPE-K

Collects

Raw

Data

Analysis of

information
Plans

adaptations

Extended MAPE-K

Collects

Raw

Data

Analysis of

information
Plans

adaptations

Applies the

adapations

Uncertainty

• MART deal with the uncertainty of the context which makes

predictions a real challenge

• Dynamic models increase the level of uncertainty over time because of

the “possible” continuous updates in order to reflect changes in the

original.

Uncertainty within a model is the difference

between the amount of information about the

original and the information that the model could, in

theory, represent about the original at a certain

instant in the system lifetime [Giese 2014]

Epistemic uncertainty

• The development-time models do not reflect the

system or the context at execution time [Giese 2014]

• The design-time requirements do not reflect the real

needs. The requirements were ambiguous

• The requirements (expectations) and the resulting

software quality are in conflict

• Changes that might occur between development-time and

deployment

Let's have a discussion

What are the problems of uncertainty in self-

adaptive systems?

Do these capabilities help? How?
Context-awareness

Situation-awareness

Requirements-awareness

MAPE-K to handle uncertainty?

MART at different levels

Monitor

• Measures raw data

• Update the corresponding MART

Uncertainty

• By updating constantly the

information

Sensors are limited to the accuracy

and precision of their measurements

Analyze

• Interprets data from the monitor

and the MART in order to analyze

new and old information

• Verifies that the monitored

information satisfies the

requirements

Uncertainty

• By using strategies such as

observing, learning and updating

Analysis and diagnosis can be

ambiguous and imprecise.

Plan

• Reads the runtime models enriched by the

analysis and performs some reasoning to

identify the best adaptations for the

running system

• Records the system changes in the

corresponding MART

Uncertainty

• The plan takes the form of a prediction of

the future state of the system

The precision and accuracy of the prediction

depends of the uncertainty in the MART

Execute

• Applies the set of changes stored in

the MART updated by the Planner

• Acts as the causal connection

between the MART and the running

system

Uncertainty

• Applying changes requires an

additional loop to verify

inconsistencies → Time is an issue

The execution can not give any

guarantees that the MART will be in

complete sync with the system

Some research questions
[Giese 2014]

 How can we determine the imprecision caused by temporal

constrains / delays?

 Does the MAPE-K also need to adapt?

 How do MART represent what to monitor and how to do it?

 Does the perspective of “what is relevant” for the MART need

to adapt at execution time?

 Should the criteria for decision-making in the analyser adapt

itself?

 How does the planner handles strategies when uncertainty

exist?

 Do temporal delays create an inconsistent view of the MART?

 How are MART affected by external influences outside the

MAPE-K loop?

Summary
Models at runtime (MART)

 Represent the

system’s up-to-date

information

 Is accessible at

runtime

 The system must be

causally connected

 Manipulable and

capable to evolve

during execution time

Demo Section 4

