
Welcome to
SENG 480A / CSC 485A / CSC 586A

Self-Adaptive and
Self-Managing Systems

Dr. Hausi A. Müller
Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a
http://courses.seng.uvic.ca/courses/2015/summer/csc/485a
http://courses.seng.uvic.ca/courses/2015/summer/csc/586a

1

Announcements
 A4

 Posted
 Due Friday, July 31
 Adaptive control

 Teaching evaluations

 Grad project
 Due Friday, July 24
 Presentations Mon, July 27

and Thu, July 30
 All students are expected to

assess presentation as part of
course participation mark

2

Teaching Evaluations
CES —Course Evaluation Survey
 Your responses are important to me and TAs
 Your responses are important for future students
 Your responses are important to Department Chair and Dean

 Completing CESs is good university citizenship
 Complete CES at http://ces.uvic.ca

 Sign in to UVic
 Conduct survey
 Can be ‘saved’ and ‘submitted’ later
 Works on desktops or mobile devices
 Survey closes at end of last day of class

 Survey results available to instructors after grade submission 3

Graduate Student
Research Paper Presentations

4

Graduate Student
Research Paper Presentations

5

Guidelines for
Grad Student Presentations
 Format of presentation

 Presentation 10 mins
 Q&A 5 mins
 Practice talk (!!)
 Practice of the best of all

instructors
 Slides

 High quality and polished
 Submit slides by July 24 to

instructor for approval
 Submit final slides 1 day after

presentation for posting on
website

 Talk outline
 Motivation
 Problem
 Approach
 Contributions of the paper
 Relation to what we learned

in the course so far
 Assessment

 All students have to fill out
an evaluation form

 Counts towards class
participation

6

7

July 27 and July 30 CSC 586A Presentations

Course Requirements

8

 All materials discussed in class are required for the midterm examinations
 Completing all midterms and assignments is required to pass the course
 Passing the midterms is not absolutely required to pass the course,

but of course highly recommended

Assignment 4

9

The Characterization Model

Adaptation
goal

Self-* properties, and
functional and non-functional

requirements

Self-managing

Reference
inputs

The way how adaptation
goals are specified

SLAs: average
response time per

request <= x

Measured
outputs

Values measured in the
managed system

Response time per
request in an interval

of time

Computed
control actions

The way how the managed
system is affected: structural,

behavioral

1. Assign CPU
2. Process allocation
3. Load balancingb

10

Villegas, Müller, Tamura, Duchien, Casallas: A framework for evaluating quality-driven
self-adaptive software systems, Proc. 6th Int. Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2011), pp. 80-89 (2011)

The Characterization Model

Controller and managed
system

System
Structure

C: MAPE-based
MS: Modifiable/ reflection

Observable and measurable
properties for assessing the

adaptation

Adaptation
Properties

Settling time

The way how researches are
evaluating their approaches

Evaluation and
Metrics

Performance of the adaptation
process (response time)

11

The Adaptation Spectrum

[20]

Control
Theory

(1)

[4] [24]

Hybrid
(6)

[3] [5] [8] [27] [1] [9] [10] [14] [15] [18] [23] [25]

Software
Engineering

(9)

[6]

Continuous signals affecting
behavioral parameters

Control Actions

Managed System’s Structure

Non-modifiable structure

Discrete operations affecting
the software architecture

Modifiable structure
Software models and reflection

12

Catalog of Adaptation Properties

1. Assign CPU
2. Process allocation
3. Load balancing

From Control
Theory

From seminal
SAS papers

13

Mapping
Properties

and QAs

Adaptation Property Quality Attributes

Performance of the
adaptation process

(response time)

14

Assignment 4

15

Adaptive Control
 Adaptive control is the idea of “redesigning” the

controller while online, by
 looking at its performance and
 changing its dynamic in an automatic way

 Motivated by aircraft autopilot design
 Allow the system to account for previously unknown dynamics

 Adaptive control uses feedback to observe the process
and the performance of the controller and reshapes the
controller closed loop behavior autonomously.

16

Adaptive Control
 Modify the control law to cope by changing system

parameters while the system is running
 Different from Robust Control in the sense that it does

not need a priori information about the uncertainties
 Robust Control includes the bounds of uncertainties in the design

of the control law.
 Therefore, if the system changes are within the bounds, the

control law needs no modification

17

Characteristics of Three-Tier Hierarchical
Intelligent Control Systems

 The three-tier architecture is prevalent
 service-oriented software systems
 automation systems
 decision-support systems
 many other types of adaptive and self-managing systems

 Three layers
 separate concerns (e.g., three-tier web architecture where the presentation and data tiers are

separated by an application or business logic tier)
 Impose a hierarchy along a dimension where such a dimension represents an extra-functional

requirement or quality criterion as outlined
 performance, internal state, goals, policies, plan sophistication, “intelligence”, or quality of service

 The scales depend on the actual requirement or criterion of the dimension
 from specific goals to general goals
 from high precision to low precision
 from fast performance to slow performance
 from stateless to memory of the past and predictions of the future
 from hard-wired policies to utility-function policies (i.e., trade-off analysis)

 Rationale for three tiers is usually not explicitly stated, but frequently a natural fit

18

Hierarchical Intelligent Control
 AI and robotics communities generated several closely

related three-layer reference control architectures:
 R. A. Brooks: A Robust Layered Control System for a Mobile Robot,

IEEE Journal on Robotics and Automation RA-2(1), March 1986.
 R.J. Firby: Adaptive Execution in Dynamic Domains, PhD Thesis,

TR YALEU/CSD/RR#672, Yale University, 1989.
 E. Gat: Reliable Goal-directed Reactive Control for Real-world

Autonomous Mobile Robots, Ph.D. Thesis, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, 1991.

 E. Gat: Three-layer Architectures, Artificial Intelligence and Mobile
Robots, MIT/AAAI Press, 1997.

 T. Shibata & T. Fukuda: Hierarchical Intelligent Control for Robotic
Motion, IEEE Trans. On Neural Networks 5(5): 823-832, 1994.

19

Hierarchical Intelligent Control
System (HICS) Architecture

20T. Shibata & T. Fukuda: Hierarchical Intelligent Control for Robotic
Motion, IEEE Trans. On Neural Networks 5(5): 823-832, 1994

1986-94

HICS Architecture
 Hierarchical Intelligent Control System (HICS)
 HICS is probably the most general reference architecture

emerging from AI and robotics
 Three HICS layers (from bottom to top)

 Execution
 Coordination
 Organization Level

 The complexity of reasoning (i.e., intelligence) increases
from the execution to the organization level

 The flexibility of policies decreases from organization to
execution (i.e., the precision of increases).

21

Robotics Inspired Three-Layer
Architecture Model

22

Goal
Management

Change
Management

Component
Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”
Goal
Management

Change
Management

Component
Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Kramer, Magee: Self-Managed Systems—An Architectural
Challenge, Future of Software Engineering (FoSE 2007), ICSE 2007.

Application
control:

Sensors,
actuators

Execute pre-computed plans

Create new plans based
on high-level objectives

2007

Dimensions of Three-Layer Control
System Reference Architectures

Environment
uncertainty

Human
involvement

Algorithm
state

Algorithm
specification

Policy
flexibility

Goal
specificity

Real-time
performance

Feedback
latency

Significant
uncertainty
about the

environment

Orchestrated
in part by
humans

Algorithms
with state
for past

memory and
future

predictions

Deliberative
services

Utility-
function
policies

High level
goals and
extensive
planning

No real-time
constraints

Feedback
loops with

long latency

Medium
uncertainty
about the

environment

Fully
autonomic

but its
policies can
be adjusted
by humans

Algorithms
with state
reflecting

memory of
the past

Task
procedures

Goal
policies

React and
respond to
situations
using pre-
computed

plans

Selected
real-time

constraints

Feedback
loops with
medium
latency

No or minimal
uncertainty
about the

environment

Fully
autonomic

Stateless
algorithms Control laws Action

policies

Event and
component

management

Hard
real-time

constraints

Feedback
loops react

quickly

23

Dimensions of Three-Layer Control
System Reference Architectures

ATLANTIS
Gat 1991

HICS
Shibata &

Fukuda 1994

3T
Bonasso, Firby,

Gat 1997

IBM ACRA
2006

Kramer &
Magee
2007

Adaptive SOA
2008

Deliberator Organization Planning Orchestrating
managers

Goal
management

User
management

Sequencer Coordination Sequencing Resource
managers

Change
management

Workflow
management

Controller Execution Skill Managed
Resources

Component
control

Service
management

24

Autonomic Computing Reference Architecture (ACRA)

Hierarchy of Autonomic Elements

25

Utility function policies

Goal policies

Action policies

2003

The DYNAMICO Reference Model

 Guides the design of highly
dynamic self-adaptation
mechanisms

 Manages uncertainty due to
changing requirements

 Preserves context-
awareness in self-
adaptation

Q3: How to
maintain context-

awareness?

Q4: How to apply
dynamic monitoring

to runtime V&V?

Villegas, Tamura, Müller, et al.: DYNAMICO: A Reference Model for Governing Control Objectives
and Context Relevance in Self-Adaptive Software Systems, Springer (2013)

26

2013

Adaptive Control—MRAC
Model Reference Adaptive Control

27

Two layers

1960

Model Reference Adaptive
Controllers—MRAC
 Also referred to as Model Reference Adaptive System

(MRAS)
 Closed loop controller with parameters that can be

updated to change the response of the system
 The output of the system is compared to a desired

response from a reference model (e.g., simulation
model)

 The control parameters are updated based on this error
 The goal is for the parameters to converge to ideal

values that cause the managed system response to
match the response of the reference model.

28

Adaptive Control—MIAC
Model identification Adaptive Control

29

Two layers

Müller and Villegas: Runtime evolution of highly dynamic software, in
Evolving Software Systems, Mens, et el. Springer, pp. 229-264 (2014)

1965

Model Identification Adaptive
Controllers—MIAC
 Perform system identification while system is running to modify the

control laws
 Create model structure and perform parameter estimation using the

Least Squares method
 Cautious adaptive controllers

 Use current system identification to modify control law, allowing for
system identification uncertainty

 Certainty equivalent adaptive controllers
 Take current system identification to be the true system, assume no

uncertainty
 Nonparametric adaptive controllers
 Parametric adaptive controllers

30

Model Identification Adaptive
Controllers—MIAC

31

PID Controller

K p
, K

i,
K d

System Identification
Model Building
 Mathematical tools and algorithms to build dynamical

models from measured data
 A dynamical mathematical model in this context is a

mathematical description of the dynamic behavior of a
system or process in either the time or frequency domain

 Theories and processes

32

 Physical
 Computing
 Social
 Engineering

 Economic
 Biological
 Chemical
 Therapeutic

Model Predictive Control (MPC)
 Two-level controllers like controllers for adaptive control
 Model predictive controllers rely on dynamic models of the managed

system
 Most often linear empirical models obtained by system identification
 The main advantage of MPC is the fact that it allows the current

timeslot to be optimized, while taking future time slots into account
 Optimize a finite time-horizon, but only realize the current timeslot
 MPC has the ability to anticipate future events and can take control

actions accordingly
 Generic PID controllers do not have predictive abilities

33

Model Predictive Control (MPC)

34

1990

Characterizing Problems for Realizing Policies
in Self-Adaptive and Self-Managing Systems

Outline

1. Background and related work
2. Characterizing policy-based optimization

problems using the Greedy algorithm
3. Mathematical framework to add structure

to problems to guarantee solution quality
4. Case study — SEAMS studies

1

Action
Goal

Utility

Algorithms increase in sophistication

Policy framework by Kephart & Walsh

A solution

Good quality
solution

Optimal
solution

J. Kephart, W. Walsh: An AI perspective on autonomic computing
policies. In: Proc. 5th IEEE Int. Workshop on Policies for Distributed

Systems and Networks (POLICY), pp. 3-12 (2004) 2

Our approach

Action
Goal

UtilityA solution

Good quality
solution

Optimal
solution

Add problem structure for Greedy algorithm

3

Our research question
• Is it possible to add structure to an optimization

problem so that the resulting solution—using the
Greedy algorithm—can meet requirements of goal
and utility function policies?

4

Our main contribution
• Is it possible to add structure to an optimization

problem so that the resulting solution—using the
Greedy algorithm—can meet requirements of goal
and utility function policies?

• Yes using our two mathematical frameworks
we can reason about the quality of the resulting
solutions

5

A typical SEAMS problem
Data center scheduling

Scheduler

Jobs Server

6

Data center scheduling problem
• Given a set of n Jobs J1, …, Jn each with the following

parameters:
 Arrival time: Ai

 Deadline: Di

 Processing time: Pi

 Profit or revenue: Ri

schedule the jobs on a single server so that the total
revenue is maximized.

• The total revenue of a schedule is the sum of the
revenues of the jobs processed in the schedule.

7

• An optimization problem
has two components
1. Objective function
2. Set of constraints

• Mathematical frameworks
1. Objective function based
2. Constraint based

Our mathematical frameworks

8

