

- Works on desktops or mobile devices
- · Survey closes at end of last day of class
- Survey results available to instructors after grade submission 3

Evaluator's name:		
Graduate students:		
Quality of presentation		
Did I learn something? Did the presentation stimulate my interest?	5	
Do I know now what the paper is all about?	5	
Does the presenter know the subject well?	5	
Presentation style: main points reiterated; positive attitude; excited about the subject.	5	
Now did the presenter perform in the Q&A session?	5	
Subtotal	25	

Unit	Undergrads Weight	Grads Weight	Remarks				
A1	12%	9%	Due Fri, May 29, 2015				
A2	12%	9%	Due Fri, June 19, 2015				
A3	12%	9%	Due Fri, July 10, 2015				
A4	12%	9%	Due Fri, July 31, 2015				
Grad Project		12%	Due Sat, July 25, 2015				
Participation and presentation	7%	7%	Only graduate students are required to give a presentation towards the end of the course.				
Midterm 1	20%	20%	June 4, 2015 in class. Closed books, closed notes, no phones, no computers, no calculators, no gadgets.				
Midterm 2	25%	25%	July 16, 2015 in class. Closed books, closed notes, no phones, no computers, no calculators, no gadgets.				
Total	100%	100%	Have a great course!				

Adaptation Property	Quality Attributes	8	
a. 199	Performance	Latency Throughput Capacity	
Stability	Dependability	Safety Integrity	
	Security	Integrity	
Accuracy	Performance	Latency Throughput Capacity	Mapping
Settling Time	Derformance	Latency	
Small Overshoot	Performance	Performance of the adaptation process (response time)	and QAs
P. A.	Dependability	Availability Reliability	
Robustness	Safety	Interact. Complex. Coupling Strength	
Termination	Dependability	Reliability Integrity	
Consistency	Dependability	Maintainability Integrity	
Scalability	Performance	Latency Throughput Capacity	
Security	Security	Confidentiality Integrity Availability	14

Hierarchical Intelligent Control

- Al and robotics communities generated several closely related three-layer reference control architectures:
 - R. A. Brooks: A Robust Layered Control System for a Mobile Robot, IEEE Journal on Robotics and Automation RA-2(1), March 1986.

21

- R.J. Firby: Adaptive Execution in Dynamic Domains, PhD Thesis, TR YALEU/CSD/RR#672, Yale University, 1989.
- E. Gat: Reliable Goal-directed Reactive Control for Real-world Autonomous Mobile Robots, Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1991.
- E. Gat: Three-layer Architectures, Artificial Intelligence and Mobile Robots, MIT/AAAI Press, 1997.
- T. Shibata & T. Fukuda: Hierarchical Intelligent Control for Robotic Motion, IEEE Trans. On Neural Networks 5(5): 823-832, 1994.

HICS Architecture

- Hierarchical Intelligent Control System (HICS)
- HICS is probably the most general reference architecture emerging from AI and robotics
- Three HICS layers (from bottom to top)
 - Execution
 - Coordination
 - Organization Level
- The complexity of reasoning (i.e., intelligence) increases from the execution to the organization level
- The flexibility of policies decreases from organization to execution (i.e., the precision of increases).

Dimensions of Three-Layer Control System Reference Architectures							
Environment uncertainty	Human involvement	Algorithm state	Algorithm specification	Policy flexibility	Goal specificity	Real-time performance	Feedback latency
Significant uncertainty about the environment	Orchestrated in part by humans	Algorithms with state for past memory and future predictions	Deliberative services	Utility- function policies	High level goals and extensive planning	No real-time constraints	Feedback loops with long latency
Medium uncertainty about the environment	Fully autonomic but its policies can be adjusted by humans	Algorithms with state reflecting memory of the past	Task procedures	Goal policies	React and respond to situations using pre- computed plans	Selected real-time constraints	Feedback loops with medium latency
No or minimal uncertainty about the environment	Fully autonomic	Stateless algorithms	Control laws	Action policies	Event and component management	Hard real-time constraints	Feedback loops react quickly 23

Model Predictive Control (MPC)

- Two-level controllers like controllers for adaptive control
 Model predictive controllers rely on dynamic models of the mar
- Model predictive controllers rely on dynamic models of the managed system
 Most often linear empirical models obtained by system identification

- Most often linear empirical models obtained by system identification
 The main advantage of MPC is the fact that it allows the current timeslot to be optimized, while taking future time slots into account
- Optimize a finite time-horizon, but only realize the current timeslot
 MPC has the ability to anticipate future events and can take control
- actions accordingly
- Generic PID controllers do not have predictive abilities

Our mathematical frameworks

- An optimization problem has two components
 1. Objective function
 - Objective function
 Set of constraints
- Mathematical frameworks
 1. Objective function based
 - 2. Constraint based

RE.