
2015-07-24

1

Welcome to
SENG 480A / CSC 485A / CSC 586A

Self-Adaptive and
Self-Managing Systems

Dr. Hausi A. Müller

Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a
http://courses.seng.uvic.ca/courses/2015/summer/csc/485a
http://courses.seng.uvic.ca/courses/2015/summer/csc/586a

1

Announcements

 A4
 Posted

 Due Friday, July 31

 Adaptive control

 Marks
 A3 marks posted

 Refresh if A3 marks are not
shown

 Midterm 2 marks hopefully
ready early next week

 Grad project
 Slides due Friday, July 24

 Presentations Mon, July 27
and Thu, July 30

 All students are expected to
assess the presentations as
part of their course
participation mark

 Teaching evaluations
 Complete CES at

http://ces.uvic.ca

2

Teaching Evaluations
CES —Course Evaluation Survey

 Your responses are important to me and TAs

 Your responses are important for future students

 Your responses are important to Department Chair and Dean

 Completing CESs is good university citizenship

 Complete CES at http://ces.uvic.ca
 Sign in to UVic

 Conduct survey

 Can be ‘saved’ and ‘submitted’ later

 Works on desktops or mobile devices

 Survey closes at end of last day of class

 Survey results available to instructors after grade submission 3

Graduate Student
Research Paper Presentations

4

Graduate Student
Research Paper Presentations

5

Guidelines for
Grad Student Presentations

 Format of presentation
 Presentation 10 mins

 Q&A 5 mins

 Practice talk (!!)

 Practice of the best of all
instructors

 Slides
 High quality and polished

 Submit slides by July 24 to
instructor for approval

 Submit final slides 1 day after
presentation for posting on
website

 Talk outline
 Motivation

 Problem

 Approach

 Contributions of the paper

 Relation to what we learned
in the course so far

 Assessment
 All students have to fill out

an evaluation form

 Counts towards class
participation

6

2015-07-24

2

7

July 27 and July 30 CSC 586A Presentations

Characterizing Problems for Realizing Policies
in Self-Adaptive and Self-Managing Systems

Our research question

• Is it possible to add structure to an optimization
problem so that the resulting solution—using the
Greedy algorithm—can meet requirements of goal
and utility function policies?

4

Edmond`s Theorem

• Utility Function Policy: J. Edmonds in 1971 proved
that if an objective function is linear and the constraint
set forms a matroid, the greedy algorithm produces an
optimal solution.

J. Edmonds: Matroids and the Greedy algorithm.
Mathematical Programming Studies, 1(1):27-36 (1971)

.

Mestre’s Theorem

• Goal Policy: J. Mestre in 2006 proved that if an
objective function is linear and the constraint set forms a
k-extendible system, the greedy algorithm gives a 1/k
approximation.

• Approximation Algorithm: When the quality of solution
output by the algorithm is at most factor k away from the
optimal solution. This can be thought of as desirable
solution.

J. Mestre: Greedy in approximation algorithms. In: Proc. 14th Annual
European Symposium on Algorithms (ESA), pp. 528-539 (2006)

Our main contribution

• Is it possible to add structure to an optimization
problem so that the resulting solution—using the
Greedy algorithm—can meet requirements of goal
and utility function policies?

• Yes using our two mathematical frameworks
we can reason about the quality of the resulting
solutions

5

2015-07-24

3

• An optimization problem
has two components

1. Objective function

2. Set of constraints

• Mathematical frameworks

1. Objective function based

2. Constraint based

Our mathematical frameworks

8

Handbook for designing policy-
driven optimization strategies

Objective
function

Constraints
Linear Submodular Unrestricted

Matroid
Optimal

Utility Function

½ approximation

Goal

No guarantees

Action

K-extendible
1/k approximation

Goal

1/k+1
approximation

Goal

No guarantees

Action

Unrestricted
No guarantees

Action

No guarantees

Action

No guarantees

Action

10

How to use our handbook

• Our characterization and approach helps
designers of self-adaptive and self-managing
systems:
Formulate optimization problems

Decide on algorithmic strategies based on policy
requirements

Reason about solution qualities

11

Metaphor
Solution quality dartboard

• Regions represent
solution qualities

• Aim for high
quality regions

12

Metaphor:
Solution dart board

Legend

Optimal solution

Good solution

A solution

13

Action
dart board

Legend

Optimal solution

Good solution

A solution

13

2015-07-24

4

Goal
dart board

Legend

Optimal solution

Good solution

A solution

14

Legend

Optimal solution

Good solution

A solution

Utility function
dart board

15

SAS applications

• Resource allocation in distributed systems

• Resource allocation in QoS service management

• Data center based scheduling problem

• SLA profit optimization

16

A typical SAS problem
Data center scheduling

Scheduler

Jobs Server

6

Data center scheduling problem

• Given a set of n Jobs J1, …, Jn each with the following
parameters:
 Arrival time: Ai

 Deadline: Di

 Processing time: Pi

 Profit or revenue: Ri

schedule the jobs on a single server so that the total
revenue is maximized.

• The total revenue of a schedule is the sum of the
revenues of the jobs processed in the schedule.

7

Greedy algorithm

• Sort the jobs based on the revenue Ri

• Start with the empty schedule and add
a next job from the sorted list to the
current schedule, if feasible

21

2015-07-24

5

• Mathematical frameworks

1. Objective function based

2. Constraint based
Properties

Downward closure

Augmentation

Our mathematical frameworks

8

Linear and Submodular
Objective Functions

26

Matroid Constraints

27

K-extensible Constraints

28

Constraints based framework

• Suppose that the objective function is linear

• Vary the constraint set

• Add structure to the constraint set so that it
satisfies the k-extendibility or matroid properties

• Quality of the solution obtained with the greedy
algorithm will meet goal and utility function
policy requirements

18

Constraint based framework
Objective
function

Constraints
Linear Submodular Unrestricted

Matroid
Optimal

Utility Function

½ approximation

Goal

No guarantees

Action

K-extendible
1/k approximation

Goal

1/k+1
approximation
Goal

No guarantees

Action

Unrestricted
No guarantees

Action

No guarantees

Action

No guarantees

Action

19

2015-07-24

6

Resource Allocation in Distributed Systems
Objective Function Based

• We are given
– A set V = { 1, 2, 3.. M} of M servers

– A set R = {1,2,3,… l} resources

– Further more we assume that every resource type such as
memory , CPU or bandwidth are split into many blocks of fixed size
so that one or more such blocks can be assigned to each server.

• Goal: Maximize the sum of the throughputs of the servers

• Constraints
– Every resource is allocated to at most one server

32

Linear objective function

Job 1 Job 2 Job 3

Schedule S

11R

54 2

22

6

Processing time — No condition

Schedule S

1 3

6
23

General — Action policy

• When processing times are arbitrary:

– Constraint set does not have nice structure

– No theoretical guarantees for the performance
of the greedy algorithm

– It satisfies the expectations of an action policy

24

Processing time — All equal

1 3

Schedule S

2

4

1 3 5 7

4

25

2-extendible property—Goal policy

• Processing times are equal

• Constraint set satisfies the 2-extendible property

• Applying Mestre’s result the greedy technique
gives ½ approximation

• Approximation algorithms are the mathematical
equivalent of goal policies

J. Mestre: Greedy in approximation algorithms. In: Proc. 14th Annual
European Symposium on Algorithms (ESA), pp. 528-539 (2006) 26

2015-07-24

7

Processing time — Unit time

1 3

Schedule S

2

4

1 2 3 4

4

27

1-extendible or matroid property
Utility function policy

• Processing times are unit times

• Constraint set forms a matroid

• According to Edmonds the Greedy algorithm produces
an optimal solution

• Satisfies the requirements of a utility function policy

J. Edmonds: Matroids and the Greedy algorithm.
Mathematical Programming Studies, 1(1):27-36 (1971)

.

28

Scheduling on
Distributed Set of Clouds

ram

time
cpu J1 J2 J3 J4 Jp...

...
C1 C2 Cm

Jobs

Clouds

Deployment
Configurations

{{J , J ,
J },{J , J },
{J ,J , J }}

{{J ,J ,
J },{J ,J }}

{{J , J ,
J },{J , J },
{J , J , J },
{}}

1 112

1

7 5

3

8 p2

2

27

7

73p

17 8

9

9

31

Formal Problem Description
• P jobs J1, …, Jp needs to be scheduled on the m clouds

C1, …, Cm . Each cloud has the following
– Deployment Configurations (DC): ni

– Each DC : {J1, …, Jp}

– Revenue: rij

• Goal : Is to choose a Deployment Strategy (DS) that
maximizes the total revenue.The total revenue of all the
clouds schedule is the sum of the revenues of all the DC
in the schedule.

• Constraints
– Choose at most one DC from each cloud

– Each DS selected has each job appearing at most

once across all clouds
32

Observations

• Objective Function is Linear

• In General – exchange not satisfied

• If deployment configurations are of size at
most s, we get (s+1)-extendible system

• If we remove a constraint in the problem,
the constraint set forms a matroid

33

Objective function based
framework

• Assume that the constraint set of the underlying
optimization problem satisfies the Matroid property

• Then vary the objective function

• Add structure to the objective function to make it
submodular and even linear

• Quality of the solution obtained with the greedy algorithm
meets goal and utility function policy requirements

34

2015-07-24

8

Objective function based
framework

Objective
function

Constraints
Linear Submodular Unrestricted

Matroid
Optimal

Utility Function

½ approximation

Goal

No guarantees

Action

K-extendible
1/k approximation

Goal

1/k+1
approximation
Goal

No guarantees

Action

Unrestricted
No guarantees

Action

No guarantees

Action

No guarantees

Action

35

Contributions
• Mathematical formulation for the three policy types
• First precise characterization of goal policies for

optimization problems1
• Mathematical framework to add structure to

optimization problems to progressively increase the
solution quality when using the greedy algorithm2

• Framework to optimization problems in the realm of
self-adaptive and self-managing systems3

S. Balasubramanian et. al.: Characterizing Problems for Realizing
Policies in Self-Adaptive and Self-Managing Systems, SEAMS 2011

.

36

