
2015-07-24

1

Welcome to
SENG 480A / CSC 485A / CSC 586A

Self-Adaptive and 
Self-Managing Systems

Dr. Hausi A. Müller

Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a
http://courses.seng.uvic.ca/courses/2015/summer/csc/485a
http://courses.seng.uvic.ca/courses/2015/summer/csc/586a

1

Announcements

 A4
 Posted

 Due  Friday, July 31

 Adaptive control

 Marks
 A3 marks posted

 Refresh if A3 marks are not 
shown

 Midterm 2 marks hopefully 
ready early next week

 Grad project
 Slides due Friday, July 24

 Presentations Mon, July 27 
and Thu, July 30

 All students are expected to 
assess the presentations as 
part of their course 
participation mark

 Teaching evaluations
 Complete CES at 

http://ces.uvic.ca
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Teaching Evaluations
CES —Course Evaluation Survey

 Your responses are important to me and TAs

 Your responses are important for future students

 Your responses are important to Department Chair and Dean

 Completing CESs is good university citizenship

 Complete CES at http://ces.uvic.ca
 Sign in to UVic

 Conduct survey

 Can be ‘saved’ and ‘submitted’ later

 Works on desktops or mobile devices

 Survey closes at end of last day of class

 Survey results available to instructors after grade submission 3

Graduate Student
Research Paper Presentations
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Graduate Student
Research Paper Presentations
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Guidelines for 
Grad Student Presentations

 Format of presentation
 Presentation 10 mins

 Q&A 5 mins

 Practice talk (!!)

 Practice of the best of all 
instructors

 Slides
 High quality and polished

 Submit slides by July 24 to 
instructor for approval

 Submit final slides 1 day after 
presentation for posting on 
website

 Talk outline
 Motivation

 Problem

 Approach

 Contributions of the paper

 Relation to what we learned 
in the course so far

 Assessment
 All students have to fill out 

an evaluation form

 Counts towards class 
participation
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July 27 and July 30 CSC 586A Presentations

Characterizing Problems for Realizing Policies
in Self-Adaptive and Self-Managing Systems

Our research question

• Is it possible to add structure to an optimization 
problem so that the resulting solution—using the 
Greedy algorithm—can meet requirements of goal 
and utility function policies?
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Edmond`s Theorem

• Utility Function Policy:  J. Edmonds in 1971 proved 
that if an objective function is linear and the constraint 
set forms a matroid, the greedy algorithm produces an 
optimal solution.

J. Edmonds: Matroids and the Greedy algorithm.
Mathematical Programming Studies, 1(1):27-36 (1971)

.

Mestre’s Theorem

• Goal Policy:  J. Mestre in 2006 proved that if an 
objective function is linear and the constraint set forms a 
k-extendible system, the greedy algorithm gives a 1/k 
approximation.

• Approximation Algorithm: When the quality of solution 
output by the algorithm is at most factor k away from the 
optimal solution. This can be thought of as desirable 
solution.

J. Mestre: Greedy in approximation algorithms. In: Proc. 14th Annual 
European Symposium on Algorithms (ESA), pp. 528-539 (2006)

Our main contribution

• Is it possible to add structure to an optimization 
problem so that the resulting solution—using the 
Greedy algorithm—can meet requirements of goal 
and utility function policies?

• Yes      using our two mathematical frameworks
we can reason about the quality of the resulting 
solutions

5



2015-07-24

3

• An optimization problem 
has two components

1. Objective function

2. Set of constraints

• Mathematical frameworks

1. Objective function based

2. Constraint based

Our mathematical frameworks

8

Handbook for designing policy-
driven optimization strategies

Objective
function

Constraints
Linear Submodular Unrestricted

Matroid
Optimal 

Utility Function

½ approximation

Goal

No guarantees

Action

K-extendible
1/k approximation

Goal

1/k+1 
approximation

Goal

No guarantees

Action

Unrestricted
No guarantees

Action

No guarantees

Action

No guarantees

Action

10

How to use our handbook

• Our characterization and approach helps 
designers of self-adaptive and self-managing 
systems:
Formulate optimization problems

Decide on algorithmic strategies based on policy 
requirements

Reason about solution qualities

11

Metaphor
Solution quality dartboard

• Regions represent 
solution qualities

• Aim for high
quality regions
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Metaphor:
Solution dart board

Legend

Optimal solution

Good solution

A solution
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Action
dart board

Legend

Optimal solution

Good solution

A solution

13
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Goal
dart board

Legend

Optimal solution

Good solution

A solution
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Legend

Optimal solution

Good solution

A solution

Utility function
dart board
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SAS applications

• Resource allocation in distributed systems

• Resource allocation in QoS service management

• Data center based scheduling problem

• SLA profit optimization

16

A typical SAS problem
Data center scheduling

Scheduler

Jobs Server

6

Data center scheduling problem

• Given a set of n Jobs J1, …, Jn each with the following 
parameters:
 Arrival time: Ai

 Deadline: Di

 Processing time: Pi

 Profit or revenue: Ri

schedule the jobs on a single server so that the total 
revenue is maximized.

• The total revenue of a schedule is the sum of the 
revenues of the jobs processed in the schedule.

7

Greedy algorithm

• Sort the jobs based on the revenue Ri

• Start with the empty schedule and add
a next job from the sorted list to the 
current schedule, if feasible 

21
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• Mathematical frameworks

1. Objective function based

2. Constraint based
Properties

Downward closure

Augmentation

Our mathematical frameworks
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Linear and Submodular
Objective Functions

26

Matroid Constraints

27

K-extensible Constraints

28

Constraints based framework 

• Suppose that the objective function is linear

• Vary the constraint set

• Add structure to the constraint set so that it 
satisfies the k-extendibility or matroid properties

• Quality of the solution obtained with the greedy 
algorithm will meet goal and utility function 
policy requirements
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Constraint based framework
Objective
function

Constraints
Linear Submodular Unrestricted

Matroid
Optimal

Utility Function

½ approximation

Goal

No guarantees

Action

K-extendible
1/k approximation

Goal

1/k+1
approximation
Goal

No guarantees

Action

Unrestricted
No guarantees

Action

No guarantees

Action

No guarantees

Action
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Resource Allocation in Distributed Systems 
Objective Function Based

• We are given 
– A set V = { 1, 2, 3.. M} of M servers

– A set R = {1,2,3,… l} resources 

– Further more we assume that every resource type such as 
memory , CPU or bandwidth are split into many blocks of fixed size 
so that one or more such blocks can be assigned to each server.

• Goal: Maximize the sum of the throughputs of the servers

• Constraints 
– Every resource is allocated to at most one server

32

Linear objective function 

Job 1 Job 2 Job 3

Schedule S

11R

54 2

22

6

Processing time — No condition

Schedule S

1 3

6
23

General — Action policy

• When processing times are arbitrary: 

– Constraint set does not have nice structure

– No theoretical guarantees for the performance 
of the greedy algorithm 

– It satisfies the expectations of an action policy
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Processing time — All equal

1 3

Schedule S

2

4

1 3 5 7

4
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2-extendible property—Goal policy

• Processing times are equal

• Constraint set satisfies the 2-extendible property

• Applying Mestre’s result the greedy technique 
gives ½ approximation

• Approximation algorithms are the mathematical 
equivalent of goal policies

J. Mestre: Greedy in approximation algorithms. In: Proc. 14th Annual 
European Symposium on Algorithms (ESA), pp. 528-539 (2006) 26
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Processing time — Unit time

1 3

Schedule S

2

4

1 2 3 4

4
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1-extendible or matroid property
Utility function policy

• Processing times are unit times

• Constraint set forms a matroid

• According to Edmonds the Greedy algorithm produces 
an optimal solution

• Satisfies the requirements of a utility function policy

J. Edmonds: Matroids and the Greedy algorithm.
Mathematical Programming Studies, 1(1):27-36 (1971)

.
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Scheduling on 
Distributed Set of Clouds

ram

time
cpu J1 J2 J3 J4 Jp...

...
C1 C2 Cm

Jobs

Clouds

Deployment 
Configurations

{{J , J , 
J },{J , J }, 
{J ,J , J  }}

{{J ,J  , 
J },{J ,J }}

{{J , J , 
J },{J , J },
{J , J , J }, 
{}}

1 112

1

7 5

3

8 p2

2

27

7

73p

17 8

9

9
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Formal Problem Description
• P jobs J1, …, Jp needs to be scheduled on the m clouds

C1, …, Cm . Each cloud has the following
– Deployment Configurations (DC): ni

– Each DC : {J1, …, Jp}

– Revenue: rij 

• Goal : Is to choose a Deployment Strategy (DS) that 
maximizes the total revenue.The total revenue of all the 
clouds schedule is the sum of the revenues of all the DC 
in the schedule.

• Constraints 
– Choose at most one DC from each cloud

– Each DS selected has each job appearing at most 

once across all clouds
32

Observations

• Objective Function is Linear

• In General – exchange not satisfied

• If deployment configurations are of size at 
most s, we get (s+1)-extendible system

• If we remove a constraint in the problem, 
the constraint set forms a matroid

33

Objective function based 
framework 

• Assume that the constraint set of the underlying 
optimization problem satisfies the Matroid property

• Then vary the objective function

• Add structure to the objective function to make it 
submodular and even linear

• Quality of the solution obtained with the greedy algorithm 
meets goal and utility function policy requirements

34
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Objective function based 
framework

Objective
function

Constraints
Linear Submodular Unrestricted

Matroid
Optimal

Utility Function

½ approximation

Goal

No guarantees

Action

K-extendible
1/k approximation

Goal

1/k+1 
approximation
Goal

No guarantees

Action

Unrestricted
No guarantees

Action

No guarantees

Action

No guarantees

Action
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Contributions
• Mathematical formulation for the three policy types
• First precise characterization of goal policies for 

optimization problems1
• Mathematical framework to add structure to 

optimization problems to progressively increase the 
solution quality when using the greedy algorithm2

• Framework to optimization problems in the realm of 
self-adaptive and self-managing systems3

S. Balasubramanian et. al.: Characterizing Problems for Realizing 
Policies in Self-Adaptive and Self-Managing Systems, SEAMS 2011

.
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