
Welcome to
SENG 480A / CSC 485A / CSC 586A

Self-Adaptive and
Self-Managing Systems

Dr. Hausi A. Müller
Department of Computer Science

University of Victoria

http://courses.seng.uvic.ca/courses/2015/summer/seng/480a
http://courses.seng.uvic.ca/courses/2015/summer/csc/485a
http://courses.seng.uvic.ca/courses/2015/summer/csc/586a

1

Announcements
 A4

 Due Friday, July 31
 Adaptive control

 Marks
 Midterm 2 will be posted soon

 Grad project
 Slides due Friday, July 24
 Presentations Mon, July 27

and Thu, July 30
 All students are expected to

assess the presentations as
part of their course
participation mark

 Teaching evaluations
 Complete CES at

http://ces.uvic.ca

2

Guidelines for
Grad Student Presentations
 Format of presentation

 Presentation 10 mins
 Q&A 5 mins
 Practice talk (!!)
 Practice of the best of all

instructors
 Slides

 High quality and polished
 Submit slides by July 24 to

instructor for approval
 Submit final slides 1 day after

presentation for posting on
website

 Talk outline
 Motivation
 Problem
 Approach
 Contributions of the paper
 Relation to what we learned

in the course so far
 Assessment

 All students have to fill out
an evaluation form

 Counts towards class
participation

3

4

July 27 and July 30 CSC 586A Presentations

Graduate Student
Research Paper Presentations

5

ENGINEERING SELF-
ADAPTIVE SYSTEMS
THROUGH FEEDBACK
LOOPS

PRESENTED BY:
SIMAR ARORA (V00824821)

KHUSHBOO GANDHI (V00794157)
FOR: SAS CSC 586, SUMMER 2015

6

AUTHORS

 Yuriy Brun: University of Southern California, Los Angeles, CA, USA
 Giovanna Di Marzo Serugendo: Birkbeck, University of London,

London, UK
 Cristina Gacek: University of Newcastle upon Tyne, Newcastle upon

Tyne, UK
 Holger Giese: Hasso Plattner Institute at the University of Potsdam,

Germany
 Holger Kienle, Hausi Muller: University of Victoria, British Columbia,

Canada
 Marin Litoiu: York University and IBM Canada Ltd., Canada
 Mauro Pezz`e: University of Milano Bicocca, Italy and University of

Lugano, Switzerland
 Mary Shaw: Carnegie Mellon University, Pittsburgh, PA, USA

mary.shaw@cs.cmu.edu

7

Introduction to Self Adaptive
Systems

 “Self” prefix indicates that the systems decide and adapt
autonomously (i.e., without or with minimal interference)

 Evolution of software engineering techniques require to keep up
with ever-changing landscapes

 Characterization of Self-adaptive systems:
 Centralized, top-down (self-managing: explicit adaptation

mechanisms, central control)
 Decentralized, bottom-up (self-organizing: emergent self-

adaptation, local information based decision control)
For Example: The Web

8

Refer: Pages 49-50

Core of SAS: Feedback loops

 Inspiration derived from control theory and nature
 Control Engineering elevates FEEDBACK LOOPS as first class

entities
 Focus of this paper: Relevance of feedback loops towards

engineering of SAS
 Importance of dynamic architecture emphasized by: Magee

and Kramer
 Self-adaptive systems : Design decisions are handled at runtime

to control dynamic behavior
 Lehman’s work on software evolution points towards the

importance of multi-loop and multi-level feedback syste

9

Refer: Pages 50-51

Generic Feedback Loop

 A feedback loop typically involves four key activities: collect, analyze, decide,
and act.

 Derived from 1980’s AI community’s sense-plan-act approach to control
autonomous mobile robots

 Generic feedback loops are unidirectional single control loop, in contrast:
multiple separate loops are typically involved in a practical system.

10

Refer: Pages 52-53

Feedback loops in Control
Engineering

 Key reason for using feedback : counter-measure disturbances or
noise in variables or imperfections in the models of the environment

 Control theory provides well-established mathematical models, tools
and techniques for analysis of system parameters that can be
applied for SAS

 Example: feedback systems are used to manage QoS in web server
farms.

11

Refer: Pages 53-54

Adaptive Control

 Adaptive control in control theory: modifying the model or the
parameters of the controller, Second control loop is installed on
top of the main controller

 The MRAC strategy relies on a predefined reference model (e.g.,
equations or simulation model) which includes reference inputs.

 The MIAC strategy builds a dynamical reference model by simply
observing the process without taking reference inputs into
account.

12

Refer: Pages 54-55

Feedback Loops in Natural
Systems

 Numerous examples available in nature: social insect behaviors
(e.g., ants), immune systems, etc.

 Highly complex and decentralized
 Resilient with built-in error correction, fault tolerance, and

scalability
 Countering attacks with reduced performance instead of system

wide failure
 Two types of feedback in nature-
1. Positive: creates amplified disorder
2. Negative: counters the amplification
 Both combine to enable system stability: positive feedback pushes

system boundaries and negative feedback stabilizes it

13

Refer: Page 56

Feedback Loops In Software
Engineering

 Feedback loops: often hidden, abstracted, dispersed, or internalized.

 Lack of a notation leads to the absence of explicit usage and control (e.g.:
UML)

 Both control loops and their properties should be explicit as advocated by
Garlan

 Visibility of feedback loops is essential :
 Understanding SAS
 Building SAS with crucial properties for the guaranteed adaptive properties

 IBM’s Autonomic Computing: Major breakthrough in making feedback loops
explicit.

14

Refer: Pages 57-58

Solutions Inspired by Explicit Control

1. MAPE-K: Autonomic element : building block for realizing the four self-* properties.

2. Garlan’s Rainbow architecture: reusable architecture to support self-adaption
(Reference: http://repository.cmu.edu/cgi/viewcontent.cgi?article=1663&context=compsci)

2. Shaw’s work summarizes: “When the execution of a software system is affected
by uncontrollable external disturbances, it indicates that a control paradigm
should be considered for the software architecture” (Reference:
http://www.cs.cmu.edu/~Compose/ByndObj.pdf)

15

Refer: Pages 58 to 61

Solutions Inspired by Natural Systems

 Challenge: To utilize biological systems knowledge to design and build
architectures and programming tools

 Motivated Solutions:

1. Tile software architectural style: inspired by feedback mechanism of
crystal growth to allow fault and adversary tolerance

2. Process schedulers, Network routing protocols inspired by mechanisms
used for direct communication by schools of fish/flock of birds

3. Stigmergy used by ants, wasps for indirect communication :

• Research in swarm robotics to solve static and dynamic optimization
problems

• Coordinating unmanned vehicles

16

Refer: Pages 62-63

Challenges

 Modeling: Explicit control loop modeling and exposure of self-adaptive properties

 Control Loops: Reference library of control loop types, interactions and mechanisms

 Architecture and Design: Decoupling of intertwined control loops, Hierarchical
organization, Requirement of reference architectures

 Unintended-Interaction Detection: Bifurcation and Integration of independent
subsystems

 Maintenance: Increased complexity of dynamically variable systems

 Middleware Support: Need for foundation of standardized interfaces and
middleware

 Verification and Validation: authenticate and substantiate effects of feedback to
ensure stability

 Reengineering: Reconfiguring legacy systems into self-adaptive systems by medium
of control mechanism is costly

 Human-Computer Interaction: Parallel control abilities to the user for explicit and
legal commandment

17

Refer: Pages 63 to 66

Conclusion

 Feedback loops are the lynchpin in software engineering for SAS.

 Inspiration derived from natural systems and control theory
regarding feedback loops has been helpful

 Recognition of such key concepts and addressing the discussed
challenges is relevant to developing complex self-adaptive
systems, models, architectures, etc.

18

Refer: Page 66

Runtime Software Adaptation
Framework, Approaches and Styles

Presentation by Adithya Rathakrishnan, Sumit Kadyan
Department of Computer Science

21

Introduction/Motivation
❖ Change: Intensive software use breeds/needs

change.
❖ Ex: Business communication by email services,

security patches and OS, Online banking system.
❖ Need of runtime evolution at low costs and

without incurring downtime.
❖ Our first instinctive approach towards RE would

be fault tolerant hardware, hot pluggable devices,
etc.

❖ Runtime Evolution in Software Systems is
complex.

❖ Software architecture plays a valuable role in the
runtime evolution.

22

Unifying Framework (MAPE-K
LOOP)
◼ Changes to the model’s

behavior.

◼ Change’s to the program’s state.

◼ Changes to the execution

context of the machine running

our program.

◼ Asynchrony of change.

23

Dynamic Adaption Model - 1
❖ Dynamic software evolution not only

required software architecture but required
software engineering.

❖ Architectural designs are CHAM and
GRAPH Grammars,ADL are Rapide,
Darwin and Dynamic Wright.

❖ WHY these models failed?
➢ Models were not accompanied by

actual system level facilities for
dynamic evolution

➢ Dynamism supported was overly
constrained

24

Dynamic Adaption Model - 2
❖ Figure 8 model proposed an approach for above

mentioned limitation
❖ It argued that dynamic system evolution must be

properly planned and carefully executed.
❖ Then came ‘Rainbow’ which suggested:Maintaining

and implementing by performing on the fly analysis
❖ Layered reference architecture for autonomous or

self managed system proposed by Kramer and
Magee

25

Examples Research
Projects/Commercial Solution

26

Conference, Symposia,
Workshops
➔ Dynamism as Primary Focus

◆ International Conference on Autonomic
Computing (ICAC).

◆ Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). (WS)

◆ Dagstuhl Seminar on Software Engineering for
Self-Adaptive Systems.

➔ Dynamism as Means or By-Product.
◆ Percom- pervasive computing and

communication.
◆ Working Conference on Component

Deployment - software deployment (Pervasive)
◆ Middleware

➔ Dynamism in our Flagship Conferences

27

Making Adaptation Easier

❖ Focus on building system that makes

adaptation easier than otherwise .

❖ 3 key points for making Adaptation

1. Making the parts subject to

change identifiable and

manipulable.

2. Controlling interaction with parts

subject to change.

3. Managing state.

28

Necessities of adaptation

❖ Identifying the element to be changed is necessary ,so is

supporting change which is achieved by encapsulation.

❖ Controlling Interaction i.e. interaction between

elements.

❖ 2 general strategies that are apparent for adaptation are

Delay Bindings and Explicit events/messages in

communication

29

Managing state

❖ Addressing the state of computational element or
communication element when they are changed.

❖ A strategy suggested is :
1. Components present an interface that forces it to

checkpoint its state externally
2. Another interface that causes the component to

initialize itself from external store.
❖ OR a better strategy is to require components to

maintain their state externally .
❖ For example REST style.

30

Adaptation styles:Past,Present
and Future
❖ Proto-runtime evolution:Pipe and Filter.
❖ Dynamic pipe and Filter:Weaves
❖ Events and notifications: Field and Publish-

Subscribe
❖ Event- based components and connectors:C2
❖ Dynamism through replication:Tile Style.
❖ Externalization of state:Representational State

Transfer (REST).
❖ Future:CREST.

31

REST and Computational
REST or CREST
❖ Most successful architectural style in supporting

runtime evolution of large -scale application.
❖ Key abstraction of information is a resource,named

by an URL.
❖ Interaction are context free and intermediaries are

promoted.
❖ Computational REST or CREST is the future.
❖ CREST extends URLs to locate active

computations and their execution environments.
❖ Ex: A smart energy microgrid could intelligently

balance supply and adapt in the face of brownouts,
environmental disasters,etc.

32

Conclusion
❖ Think five years in future/past on a technology

perspective.
❖ Sciences of Software Synthesis

➢ Designing- a Science of design.
➢ Implementation- a Science of realization.
➢ Adaptability-a Science of dynamic adaptation.
➢ Domain Characteristics- a Science of domain-

specific software engineering.
❖ Dynamic adaptation will be an obligation in the next few

years specifically for software engineering.

33

References
◆ Oreizy, Peyman, Nenad Medvidovic, and

Richard N. Taylor. "Runtime software
adaptation: framework, approaches, and
styles." Companion of the 30th international
conference on Software engineering. ACM,
2008.

◆ Erenkrantz, Justin Ryan. Computational REST:
A New Model for Decentralized, Internet-Scale
Applications DISSERTATION. Diss. University
of California, Irvine, 2009.

◆ Oreizy, Peyman, et al. "An architecture-based
approach to self-adaptive software." IEEE
Intelligent systems 3 (1999): 54-62.

34

Questions?

35

Comparison

Update behaviour Update state Update
execution
context

Asynchrony
of change

Implementatio
n Probes

REST stateless http server
can be restarted for
updates; database
servers updated using
vendor specific
techniques.

state is
externalized: all
messages carry
state and is
inspected;http
server is
stateless and
application state
stored in DB
servers.

before update
drain in process
requests and
refuse new req.

various
techniques.e.g:
shift load to ½
nodes,update,sh
ift load,etc

server logs; query
state in database

CREST stateless servers may
offer URL-specific
interpreters;nominal
behavior encapsulated
in computations that
are transmitted.

all aspects of a
computations
state made
explicit and
externalized.

fully included
within the
computations
exchanged
between peers

same a REST server logs;
computations are
explicit and
transmitted, may
be examined by
intermediaries

36

Jeff Kramer and Jeff Magee

Self-Managed
Systems: an
Architectural
Challenge

By: Ernest Aaron and Harshit Jain

37

 Dilemma
 Self Managed System
 Motivation
 Why architectural approach?
 Related work
 Architecture model
 Research issues
 Summary
 Course Reflection

Outline

38

“As the size, complexity and adaptability required by applications
increases, so does the need for software systems which are
scalable, support dynamic composition and rigorous analysis,
and are flexible and robust in the presence of change.”

Dilemma

-We Need Self Management System

39

 Self- configuration

 Self- adaptation and Self-
healing

 Self- monitoring

 Self- tuning

Self Managed Systems

Self -* or
autonomic
systems

40

“Their focus is on an architectural approach to self management,
not because the language-level or network-level approaches are
uninteresting or less promising, but because they believe that the
architectural level seems to provide the required level of
abstraction and generality to deal with the challenges posed with
self management system.”

Motivation

-Objective is to minimise the degree of explicit management

41

 Generality.

 Level of abstraction.

 Potential for scalability.

 Builds on existing work.

 Potential for an integrated approach.

Why an architecture based approach?

42

Gats architecture-
 Control (reactive feedback control)
 Sequencing (reactive plan

execution)
 Deliberation (Planning)

Self management in Robotic Systems

Sense-Plan-Act (SPA)
Garlan’s self-healing system-
 Monitoring
 Analysis/resolution
 Adaptation

43

Control layer consists of sensors, actuators, control loops.
 Self tuning, event and status reporting to higher levels.

Sequencing layer reacts to changes in state reported from lower
levels.
 Execute plans based on existing control behavior.

Goal management(Deliberation) is planning based on
current state to achieve the specification of high level goal.
 Introduction of new goals, produces change management plans

according to requests from layers.

Gats Architecture Control
layer

Sequenci
ng layer

Goal
manage

ment

44

Architecture model of 3 layers
contains:
 Component Layer
 Change Management
 Goal Management

Architectural Model

Compone
nt Layer

Change
Managem
ent Layer

Goal
Managem
ent Layer

45

 Implements the set of services that it provides.

 Mode: It determines abstracted view of internal
status of components.

1--Component Layer Compone
nt Layer

 Preserving safe application operation during
change.

 No state loss during configuration for
transactions.

Challenges

46

 Responsible for execution changes in response to change in state
after reported from lower layer or in response to goal changes.

 Precompiled sets of plans that can respond to predicted class of
state change.

2-- Change Management Layer
Change

Managem
ent Layer

 Distribution and decentralization.

 Distribution raises issues like latency, concurrency,
partial failures.

Challenges

47

 Top layer is responsible for the plan required by below
layers

 Refinement from high- level goals to specified goals(
processable by machines) with human assistance

3-- Goal Management Layer Goal
Managem
ent Layer

Challenges
 Goal specification that it is both comprehensive by

human users and machine readable.
 Producing a change plan based on system goals and

current state of the system

48

 Self management at architectural level.

 Three layers defines self managed system which are
 Component layer
 Change Management layer
 Goal Management layer

 To achieve the goals of the system components automatically configure their
interaction in a way that is compatible with an overall architecture specification.

 Research challenges posed by individual layer need to be addressed and
comprehensive integrated solution is needed.

Summary

49

 Self Adaptive System

 Ultra Large System(ULS)
 Continuous Evolution

Software Architecture

Self Managing System

Course Reflections

50

Jeff Kramer and Jeff Magee

Self-Managed
Systems: an
Architectural
Challenge

By: Ernest Aaron and Harshit Jain

Thank You!

51

Graduate Student
Research Paper Presentations

52

