
Chapter 8
Runtime Evolution of Highly Dynamic Software

Hausi Müller and Norha Villegas

Summary. Highly dynamic software systems are applications whose operations are
particularly affected by changing requirements and uncertainty in their execution
environments. Ideally such systems must evolve while they execute. To achieve
this, highly dynamic software systems must be instrumented with self-adaptation
mechanisms to monitor selected requirements and environment conditions to as-
sess the need for evolution, plan desired changes, as well as validate and verify the
resulting system. This chapter introduces fundamental concepts, methods, and tech-
niques gleaned from self-adaptive systems engineering, as well as discusses their
application to runtime evolution and their relationship with off-line software evolu-
tion theories. To illustrate the presented concepts, the chapter revisits a case study
conducted as part of our research work, where self-adaptation techniques allow the
engineering of a dynamic context monitoring infrastructure that is able to evolve
at runtime. In other words, the monitoring infrastructure supports changes in mon-
itoring requirements without requiring maintenance tasks performed manually by
developers. The goal of this chapter is to introduce practitioners, researchers and
students to the foundational elements of self-adaptive software, and their applica-
tion to the continuos evolution of software systems at runtime.

229
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _8, © 201
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg 4

230 Hausi Müller and Norha Villegas

8.1 Introduction

Software evolution has been defined as the application of software maintenance ac-
tions with the goal of generating a new operational version of the system that guar-
antees its functionalities and qualities, as demanded by changes in requirements and
environments [170, 598]. In the case of continuously running systems that are not
only exposed frequently to varying situations that may require their evolution, but
also cannot afford frequent interruptions in their operation (i.e., 24/7 systems), soft-
ware maintenance tasks must be performed ideally while the system executes, thus
leading to runtime software evolution [598]. Furthermore, when changes in require-
ments and environments cannot be fully anticipated at design time, maintenance
tasks vary depending on conditions that may be determined only while the system
is running.

This chapter presents runtime evolution from the perspective of highly dynamic
software systems, which have been defined as systems whose operation and evolu-
tion are especially affected by uncertainty [646]. That is, their requirements and ex-
ecution environments may change rapidly and unpredictably. Highly dynamic soft-
ware systems are context-dependent, feedback-based, software intensive, decentral-
ized, and quality-driven. Therefore, they must be continually evolving to guarantee
their reliable operation, even when changes in their requirements and context sit-
uations are frequent and in many cases unforeseeable. Müller et al. have analyzed
the complexity of evolving highly dynamic software systems and argued for the ap-
plication of evolution techniques at runtime [621]. They base their arguments on
a set of problem attributes that characterize feedback-based systems [622]. These
attributes include (i) the uncertain and non-deterministic nature of the environment
that affects the system, and (ii) the changing nature of requirements and the need
for regulating their satisfaction through continuous evolution, rather than traditional
software engineering techniques.

Control theory, and in particular feedback control, provides powerful mecha-
nisms for uncertainty management in engineering systems [625]. Furthermore, a
way of exploiting control theory to deal with uncertainty in software systems is
through self-adaptation techniques. Systems enabled with self-adaptive capabili-
ties continuously sense their environment, analyze the need for changing the way
they operate, as well as plan, execute and verify adaptation strategies fully or semi-
automatically [177, 221]. On the one hand, the goal of software evolution activities
is to extend the life span of software systems by modifying them as demanded by
changing real-world situations [595]. On the other hand, control-based mechanisms,
enabled through self-adaptation, provide the means to implement these modifica-
tions dynamically and reliably while the system executes.

Rather than presenting a comprehensive survey on runtime software evolution
and self-adaptive systems, this chapter introduces the notion of runtime software
evolution, and discusses how foundational elements gleaned from self-adaptation
are applicable to the engineering of runtime evolution capabilities. For this we or-
ganized the contents of this chapter as follows. Section 8.2 describes a case study,
based on dynamic context monitoring, that is used throughout the chapter to ex-

8 Runtime Evolution of Highly Dynamic Software 231

plain the presented concepts. Section 8.3 revisits traditional software evolution to
introduce the need for applying runtime software evolution, and discusses selected
aspects that may be taken into account when deciding how to evolve software sys-
tems dynamically. Section 8.4 characterizes dimensions of runtime software evolu-
tion, and discusses Lehman’s laws in the context of runtime evolution. Section 8.5
introduces the application of feedback, feedforward, and adaptive control to run-
time software evolution. Sections 8.6 and 8.7 focus on foundations and enablers of
self-adaptive software that apply to the engineering of runtime software evolution,
and Section 8.8 illustrates the application of these foundations and enablers in the
case study introduced in Section 8.2. Section 8.9 discusses selected self-adaptation
challenges that deserve special attention. Finally, Section 8.10 summarizes and con-
cludes the chapter.

8.2 A Case Study: Dynamic Context Monitoring

As part of their collaborative research on self-adaptive and context-aware soft-
ware applications, researchers at University of Victoria (Canada) and Icesi Univer-
sity (Colombia) developed SMARTERCONTEXT [822, 895–898, 900]. SMARTER-
CONTEXT is a service-oriented context monitoring infrastructure that exploits self-
adaptation techniques to evolve at runtime with the goal of guaranteeing the rele-
vance of monitoring strategies with respect to changes in monitoring requirements
[894].

In the case study described in this section, the SMARTERCONTEXT solution
evolves at runtime with the goal of monitoring the satisfaction of changing quality
of service (QoS) contracts in an e-commerce scenario [822]. Changes in contracted
conditions correspond to either the addition/deletion of quality attributes to the con-
tracted service level agreement (SLA), or the modification of desired conditions and
corresponding thresholds. Suppose that an online retailer and a cloud infrastructure
provider negotiate a performance SLA that specifies throughput, defined as the time
spent to process a purchase order request (ms/request), as its quality factor. Sup-
pose also that a first version of SMARTERCONTEXT was developed to monitor the
variable relevant to the throughput quality factor (i.e., processing time per request).
Imagine now that later the parties renegotiate the performance SLA by adding ca-
pacity, defined in terms of bandwidth, as a new quality factor. Since SMARTER-
CONTEXT has been instrumented initially to monitor processing time only, it will
have to evolve at runtime to monitor the system’s bandwidth. Without these runtime
evolution capabilities, the operation of the system will be compromised until the
new monitoring components are manually developed and deployed.

SMARTERCONTEXT relies on behavioral and structural self-adaptation tech-
niques to realize runtime evolution. Behavioural adaptation comprises mechanisms
that tailor the functionality of the system by modifying its parameters or business
logic, whereas structural adaptation uses techniques that modify the system’s soft-
ware architecture [899]. SMARTERCONTEXT implements behavioral adaptation by

232 Hausi Müller and Norha Villegas

modifying existing monitoring conditions or adding new context types and reason-
ing rules at runtime, and structural adaptation by (un)deploying context gatherers
and context processing components. All these operations are realized without re-
quiring the manual development or deployment of software artifacts, and minimiz-
ing human intervention.

8.3 Assessing the Need for Runtime Evolution

The need for evolving software systems originates from the changing nature of sys-
tem requirements and the changing environment that can influence their accom-
plishment by the system [123]. Indeed, as widely discussed in Chapter 1, chang-
ing requirements are inherent in software engineering. For example, in the case
of SMARTERCONTEXT the need for generating new versions of the system arises
from the renegotiation of contracted SLAs, which implies changes in monitoring
requirements. Several models have been proposed to characterize the evolution pro-
cess of software systems [590]. In particular, the change mini-cycle model proposed
by Yau et al. defines a feedback-loop-based software evolution process comprising
the following general activities: change request, analysis, planning, implementation,
validation and verification, and re-documentation [936]. Figure 8.1 depicts the flow
among the general activities of the change mini-cycle process model. These activi-
ties were proposed for off-line software evolution, which implies the interruption of
the system’s operation.

Request

Change

Analyze and

Plan Change

Implement

Change

Verify and

Validate

Further changes requiredRejected request

Re-

documentation

Fig. 8.1: Activities of the change mini-cycle process model for software evolu-
tion [936] (adapted from [590]). This model implements a feedback loop mecha-
nism with activities that are performed off-line.

We define off-line software evolution as the process of modifying a software sys-
tem through actions that require intensive human intervention and imply the in-
terruption of the system operation. We define the term runtime software evolution
as the process of modifying a software system through tasks that require minimum
human intervention and are performed while the system executes. This section char-
acterizes software evolution from a runtime perspective.

The need for evolving software systems emerges from changes in environments
and requirements that, unless addressed, compromise the operation of the system.
The need for evolving software systems at runtime arises from the frequency and

8 Runtime Evolution of Highly Dynamic Software 233

uncertainty of these changes, as well as the cost of implementing off-line evolu-
tion. In the context of software evolution, we define frequency as the number of
occurrences of a change event per unit of time that will require the evolution of the
system. For example, the number of times an SLA monitored by SMARTERCON-
TEXT is modified within a year. We define uncertainty as the reliability with which it
is possible to characterize the occurrence of changes in requirements and execution
environments. The level of uncertainty in a software evolution process depends on
the deterministic nature of these changes. That is, the feasibility of anticipating their
frequency, date, time, and effects on the system. In the case of SMARTERCONTEXT,
changes in SLAs will be less uncertain to the extent that it is possible to anticipate
the date and time contract renegotiation will occur, as well as the aspects of the
SLA that will be modified including quality factors, metrics and desired thresholds.
The cost of implementing off-line evolution can be quantified in terms of metrics
such as system’s size, time to perform changes, personnel, engineering effort, and
risk [123, 509, 510]. Further information about the cost of evolving SMARTERCON-
TEXT at runtime are available in the evaluation section presented in [822].

As introduced in Section 8.2 engineering techniques applicable to self-adaptive
software systems [177] can be used to evolve software systems dynamically. Never-
theless, runtime evolution is not always the best solution given the complexity added
by the automation of evolution tasks. As an alternative to decide whether or not to
implement runtime software evolution we envision the analysis of its benefit-cost
ratio (BCR). We define the BCR of runtime software evolution as a function of the
three variables mentioned above: frequency, uncertainty, and off-line evolution cost.

Figure 8.2 characterizes the application of runtime versus off-line software evo-
lution according to the variables that affect the BCR function. Figure 8.2(a) concerns
scenarios where the cost of off-line software evolution is high, whereas Figure 8.2(b)
scenarios where this cost is low. In both tables rows represent the frequency of
changes in requirements and environments, columns the level of uncertainty of these
changes, and cells whether the recommendation is to apply runtime or off-line soft-
ware evolution. Dark backgrounds indicate high levels of complexity added by the
application of runtime evolution. We refer to each cell as celli, j where i and j are
the row and column indices that identify the cell.

According to Figure 8.2, runtime evolution is the preferred alternative when the
cost of evolving the system off-line is high, as for example in the application of
SMARTERCONTEXT to the monitoring of SLAs that may be renegotiated while the
e-commerce platform is in production. When off-line evolution is affordable and the
frequency of changes is high, both alternatives apply. Nevertheless, it is important
to analyze the value added by runtime evolution versus its complexity (cf. cell1,1 in
Figure 8.2(b)). The complexity added by runtime evolution lies in the automation of
activities such as the ones defined in the change mini-cycle process (cf. Figure 8.1).
That is, the system must be instrumented with monitors to identify the need for evo-
lution, analyzers and planners to correlate situations and define evolution actions
dynamically, executors to modify the system, runtime validation and verification
tasks to assure the operation of the system after evolution, and runtime modelling
mechanisms to preserve the coherence between the running system and its design

234 Hausi Müller and Norha Villegas

High off-line

evolution cost

High frequency

Low frequency

High

uncertainty

Low

uncertainty

runE runE

runE offE runE

Low off-line

evolution cost

High frequency

Low frequency

High

uncertainty

Low

uncertainty

runE runE

offE

(a)

offE

offE

Column 1 Column 2

Row 1

Row 2

Row 1

Row 2

Column 1 Column 2

Fig. 8.2: A characterization of runtime versus off-line software evolution in light
of frequency of changes in requirements and environments, uncertainty of these
changes, and cost of off-line evolution. Dark backgrounds indicate high levels of
complexity added by the application of runtime evolution.

artifacts. The complexity of the system is augmented since the functionalities that
realize these tasks at runtime not only require qualified engineers for their imple-
mentation, but also become system artifacts that must be managed and evolved.

Under high levels of uncertainty runtime evolution is an alternative to be consid-
ered despite its complexity. This is because the variables that characterize the execu-
tion environment of the running system are unbound at design or development time,
but bound at runtime. For example, in many cases it is infeasible to anticipate at de-
sign time or development time changes to be implemented in SMARTERCONTEXT.
On the contrary, the runtime evolution scenarios that expose the lowest complexity
are those with low uncertainty (cf. column 2 in both matrices). This is because the
system operates in a less open environment where the evolution process can be char-
acterized better at design and development time. As a result, the functionalities used
to evolve the system at runtime are less affected by unforeseeable context situations.
For example, it is possible to manually program runtime evolution functionalities to
guarantee more demanding throughput levels during well known shopping seasons
such as Black Friday.1 When the off-line evolution cost is high and the uncertainty

1 On Black Friday, the day after Thanksgiving Day in USA, sellers offer unbeatable deals to
kick off the shopping season thus making it one of the most profitable days. Black Friday is

8 Runtime Evolution of Highly Dynamic Software 235

is low, runtime evolution seems to be the best alternative (cf. cell1,2 and cell2,2 in
Figure 8.2(a)). Complexity is directly proportional to uncertainty. Therefore, when
uncertainty and the cost of off-line evolution are low, runtime evolution is still a
good option if the frequency of changes that require the evolution of the system are
extremely high (cf. cell1,2 in Figure 8.2(b)). In contrast, under low change frequen-
cies, high levels of uncertainty and low off-line evolution costs, off-line evolution
constitutes the best alternative (cf. cell2,1 in Figure 8.2(b)). Moreover, off-line evo-
lution is the best option when evolution cost, change frequencies and uncertainty
are low (cf. cell2,2 in Figure 8.2(b)).

Recalling the evolution scenario described in Section 8.2, it is possible to il-
lustrate the application of the characterization of the BCR variables presented in
Figure 8.2 to decide whether to implement runtime or off-line software evolution
for adding new functionalities to the SMARTERCONTEXT monitoring infrastruc-
ture. Regarding the cost of off-line software evolution, the implementation of man-
ual maintenance tasks on the monitoring infrastructure of the e-commerce platform
is clearly an expensive and complex alternative. First, the manual deployment and
undeployment of components is expensive in terms of personnel. Second, the evolu-
tion time can be higher than the accepted levels, therefore the risk of violating con-
tracts and losing customers increases. In particular, this is because renegotiations
in SLAs cannot always be anticipated and must be addressed quickly. Uncertainty
can also be high due to the variability of requirements among the retailers that use
the e-commerce platform, thus increasing the frequency of changes in requirements.
For example, new retailers may subscribe to the e-commerce platform with quality
of service requirements for which the monitoring instrumentation is unsupported.
Therefore, the system must evolve rapidly to satisfy the requisites of new customers.
These high levels of uncertainty and frequency of changes in requirements require
runtime support for monitoring, system adaptation, and assurance.

8.4 Dimensions of Runtime Software Evolution

Software evolution has been analyzed from several dimensions comprising, among
others, the what, why and how dimensions of the evolution process [590]. The what
and why perspectives focus on the software artifacts to be evolved (e.g., the software
architecture of SMARTERCONTEXT) and the reason for evolution (e.g., a new moni-
toring requirement), respectively. The how view focuses on the means to implement
and control software evolution (e.g., using structural self-adaptation to augment the
functionality of the system by deploying new software components at runtime). Fig-
ure 8.3 summarizes these perspectives as dimensions of runtime software evolution.
With respect to the why perspective, the emphasis is on changing requirements (cf.
Chapter 1), malfunctions, and changing execution environments as causes of run-

the day in which retailers earn enough profit to position them “in the black” – an accounting
expression that refers to the practice of registering profits in black and losses in red. Source:
http://www.investopedia.com.

236 Hausi Müller and Norha Villegas

time evolution. Regarding the what, the focus is on system goals, system structure
and behavior, and design specifications as artifacts susceptible to runtime evolu-
tion. For example models and metamodels as studied in Chapter 2. Concerning the
how, the attention is on methods, frameworks, technologies, and techniques gleaned
from control theory and the engineering of self-adaptive software (SAS) systems.
The elements highlighted in gray correspond the answers to the why, what and how
questions for the case study presented in Section 8.2.

Dimensions of Runtime Software

Evolution

What

(artifacts to be evolved)

Why

(reasons for evolution)

How

(means for runtime evolution)

Changing requirements

Malfunctions

Changing environments

System goals

System structure and behavior

Design specifications

Control and

Self-adaptation

Fig. 8.3: Characterizing dimensions of runtime software evolution. The highlighted
elements relate to the SMARTERCONTEXT case study.

Software evolution has been characterized through the laws of software evolu-
tion proposed by Lehman [509, 553]. Lehman’s laws apply to E-type systems, the
term he used to refer to software systems that operate in real world domains that are
potentially unbounded and susceptible to continuing changes [507]. Therefore, it is
clear that when Lehman proposed his laws of software evolution back in the sev-
enties, he focused on systems that operate in real world situations and therefore are
affected by continuing changes in their operation environments [509, 553]. Hence,
Lehman’s laws corroborate the need for preserving the qualities of software systems
in changing environments, which may require the implementation of runtime evo-
lution capabilities depending on the cost of off-line evolution, the uncertainty of the
environment and the frequency of changes. Lehman’s laws of software evolution
can be summarized as follows:

1. Continuing change. E-type systems must adapt continuously to satisfy their re-
quirements.

2. Increasing complexity. The complexity of E-type systems increases as a result of
their evolution.

3. Self-regulation. E-type system evolution processes are self-regulating.
4. Conservation of organizational stability. Unless feedback mechanisms are appro-

priately adjusted in the evolution process, the average effective rate in an evolving
E-type system tends to remain constant over the product lifetime.

8 Runtime Evolution of Highly Dynamic Software 237

5. Conservation of familiarity. The incremental growth and long term growth rate
of E-type systems tend to decline.

6. Continuing growth. The functional capability of E-type systems must be contin-
ually increased to maintain user satisfaction over the system lifetime.

7. Declining quality. Unless adapted according to changes in the operational envi-
ronment, the quality of E-type systems decline.

8. Feedback system. E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems [553].

Considering the continuing change law, highly dynamic software systems such
as SMARTERCONTEXT need not only adapt continuously to satisfy their require-
ments, but in many cases do it at runtime. One of the key benefits of evolving a
system at runtime is to be able to verify assumptions made at design time. Although
valid when the system was designed, some of these assumptions become invalid
over time. For example, the QoS requirements of the e-commerce company in the
application scenario described in Section 8.2 may vary over time. Moreover, new
monitoring requirements must be addressed to satisfy changes in SLAs. To counter-
act the effects of this first law, traditional software evolution focuses on the off-line
activities defined in the change mini-cycle process (cf. Figure 8.1). On the contrary,
runtime evolution argues for the instrumentation of software systems with feedback-
control capabilities that allow them to manage uncertainty and adapt at runtime, by
performing these tasks while the system executes. Of course, due to the increasing
complexity law, the trade-off between runtime and off-line evolution affects the level
of automation and the instrumentation required to evolve the system without risking
its operation. The complexity of highly dynamic software systems includes aspects
such as the monitoring of the execution environment, the specification and man-
agement of changing system requirements, the implementation of dynamic mech-
anisms to adjust the software architecture and business logic, the preservation of
the coherence and causal connection among requirements, specifications and imple-
mentations, and the validation of changes at runtime.

The self-regulation law stated by Lehman characterizes software evolution as
a self-regulating process. In highly dynamic software systems self-regulation ca-
pabilities are important across the software life cycle, in particular at runtime. One
implication, among others, is the capability of the system to decide when to perform
maintenance and evolution tasks and to assure the evolution process. Self-regulating
software evolution can be realized by enabling software systems with feedback con-
trol mechanisms [147, 212, 553, 622].

Laws continuing growth and declining quality are undeniably connected with the
capabilities of a software system to evolve at runtime. Continuing growth argues for
the need of continually increasing the functionalities of the system to maintain user
satisfaction over time. Similarly, declining quality refers to the need for continually
adapting the system to maintain the desired quality properties.

Regarding declining quality, runtime software evolution can effectively deal with
quality attributes whose preservation depends on context situations [820, 899].

238 Hausi Müller and Norha Villegas

8.5 Control in Runtime Software Evolution

Control is an enabling technology for software evolution. At runtime, control mech-
anisms can be realized using self-adaptation techniques [147]. Feedback control
concerns the management of the behavior of dynamic systems. In particular, it can
be applied to automate the control of computing and software systems [147, 388].
From the perspective of software evolution, feedback control can be defined as
the use of algorithms and feedback for implementing maintenance and evolution
tasks [553, 625].

8.5.1 Feedback Control

Feedback control is a powerful tool for uncertainty management. As a result, self-
evolving software systems based on feedback loops are better prepared to deal with
uncertain evolution scenarios. This is the reason why the BCR of runtime evolution
is higher under uncertain environments (cf. Section 8.3). Uncertainty management
using feedback control is realized by monitoring the operation and environment of
the system, comparing the observed variables against reference values, and adjust-
ing the system behavior accordingly. The goal is to adapt the system to counteract
disturbances that can affect the accomplishment of its goals.

8.5.2 Feedforward Control

Feedforward control, which operates in an open loop, can also benefit the evolution
of software systems. The fundamental difference between feedback and feedfor-
ward control is that in the first one control actions are based on the deviation of
measured outputs with respect to reference inputs, while in the latter control actions
are based on plans that are fed into the system. These plans correspond to actions
that are not associated with uncertain changes in the execution environment. An-
other application of feedforward control is the empowerment of business and sys-
tem administrators to modify system goals (e.g., non-functional requirements) and
policies that drive the functionalities of feedback controllers. Feedforward control
could be exploited using policies and pre-defined plans as the mechanism to con-
trol runtime software evolution tasks. Therefore, feedforward control provides the
means to manage short-term evolution according to the long-term goals defined in
the general evolution process.

The application of feedback and feedforward control to runtime software evolu-
tion can be analyzed in light of the dimensions of software evolution depicted in
Figure 8.3. With respect to the why dimension, feedback control applies to runtime
evolution motivated by malfunctions or changing environments, and feedforward
to runtime evolution originated in changing requirements. The reasons for this dis-

8 Runtime Evolution of Highly Dynamic Software 239

tinction are that in the first case the symptoms that indicate the need for evolution
result from the monitoring of the system and its environment and the analysis of
the observed conditions. In the second case, the evolution stimulus comes from the
direct action of an external entity (e.g., a system administrator). For example, in the
case of SMARTERCONTEXT feedback control allows the monitoring infrastructure
to replace failing sensors automatically, whereas feedforward enables SMARTER-
CONTEXT to deploy new monitoring artifacts or modify the monitoring logic to
address changes in SLAs. With respect to the what dimension, pure control-based
evolution techniques better apply to the modification of the system behavior or its
computing infrastructure (this does not involve the software architecture). The rea-
son is that pure control-based adaptation actions are usually continuous or discrete
signals calculated through a mathematical model defined in the controller [899].

The feedback loop, a foundational mechanism in control theory, is a reference
model in the engineering of SAS systems [622, 772]. Therefore, the implementation
of runtime evolution mechanisms based on feedback control and self-adaptation re-
quires the understanding of the feedback loop, its components, and the relationships
among them. Figure 8.4 depicts the feedback loop model from control theory. To
explain its components and their relationships, we will extend our runtime software
evolution case study described in Section 8.2. These extensions are based on exam-
ples written by Hellerstein et al. [388].

Imagine that the service-oriented e-commerce system that is monitored by the
SMARTERCONTEXT monitoring infrastructure provides the online retailing plat-
form for several companies worldwide. Important concerns in the operation of this
system are its continuous availability and its operational costs. The company that
provides this e-commerce platform is interested in maximizing system efficiency
and guaranteeing application availability, according to the needs of its customers.
Concerning efficiency, the company defines a performance quality requirement for
the service that processes purchase orders. The goal is to maximize the number of
purchase orders processed per time unit. Regarding availability, the business imple-
ments a strategy based on redundant servers. The objective is to guarantee that the
operation of the e-commerce platform upon eventual failures in its infrastructure.
After the system has been in production for a certain time period, the company real-
izes that the system capacity to process purchase orders is insufficient to satisfy the
demand generated by Black Friday and by different special offers placed at strategic
points during the year. To solve this problem, the company may decide to extend
its physical infrastructure capacity to guarantee availability under peak load levels.
Nevertheless, this decision will affect efficiency and costs since an important part
of the resources will remain unused for long periods of time, when the system load
is at its normal levels. To improve the use of resources, the company may decide
to perform periodic maintenance tasks manually to increase or decrease system ca-
pacity according to the demand. However, this strategy not only increases the costs
and complexity of maintaining and evolving the system, but is also ineffective since
changes in the demand cannot always be anticipated and may arise quickly (e.g., in
intervals of minutes when a special discount becomes popular in a social network)
and frequently. Similarly, the strategy based on redundant servers to guarantee avail-

240 Hausi Müller and Norha Villegas

ability may challenge the maintenance and evolution of the system when performed
manually. First, the use of redundant servers to address failures in the infrastructure
must not compromise the contracted capacity of the system. Thus, servers must be
replaced only with machines of similar specifications. Second, this strategy must
take into account the capacity levels contracted with each retailer, which may vary
not only over time, but also from one retailer to another.

The target system represents the system to be evolved dynamically using self-
adaptation (e.g., our e-commerce platform). System requirements correspond to ref-
erence inputs (label (A) in Figure 8.4). Suppose that for the e-commerce company
to guarantee the availability of its platform, it implements the redundant server strat-
egy by controlling the CPU utilization of each machine. For this, it must maintain
servers working below their maximum capacity in such a way that when a server
fails, its load can be satisfied by the others. The reference input corresponds to the
desired CPU utilization of the servers being controlled. The system is monitored
continuously by comparing the actual CPU usage, the measured output (label (B)),
against the reference input. The difference between the measured output and the
reference input is the control error (label (C)). The controller implements a mathe-
matical function (i.e., transfer function) that calculates the control input (label (D))
based on the error. Control inputs are the stimuli used to affect the behavior of the
target system. To control the desired CPU usage, the control input is defined as the
maximum number of connections that each controlled server must satisfy. The mea-
sured output can also be affected by external disturbances (label (E)), or even by the
noise (label (F)) caused by the system evolution. Transducers (label (G)) translate
the signals coming from sensors, as required by the comparison element (label (H),
for example to unify units of measurement). In this scenario the why dimension of
runtime software evolution corresponds to malfunctions, the what to the processing
infrastructure, and the how to self-adaptation based on feedback control.

Controller Target System

Transducer

+
-

Reference

input

Control

Error

Control

Input

Disturbance

Input

Noise

Input

Measured

Output

Transduced

Output

(B)(A) (C) (D) (E)(F)

(G)

(H)

Fig. 8.4: Classical block diagram of a feedback control system [388]. Short-term
software evolution can be realized through feedback loops that control the behavior
of the system at runtime.

8 Runtime Evolution of Highly Dynamic Software 241

To Probe Further

Readers interested in studying the application of feedback loops to the
engineering of self-adaptation mechanisms for software systems may refer
to [147, 388, 622, 772, 900].

8.5.3 Adaptive Control

From the perspective of control theory, adaptive control concerns the automatic ad-
justment of control mechanisms. Adaptive control researchers investigate parameter
adjustment algorithms that allow the adaptation of the control mechanisms while
guaranteeing global stability and convergence [268]. Control theory offers several
reference models for realizing adaptive control. We focus our attention on two of
them, model reference adaptive control (MRAC) and model identification adaptive
control (MIAC).

8.5.3.1 Model Reference Adaptive Control (MRAC)

MRAC, also known as model reference adaptive system (MRAS), is used to im-
plement controllers that support the modification of parameters online to adjust the
way the target system is affected (cf. Figure 8.5). A reference model, specified in
advance, defines the way the controller’s parameters affect the target system to ob-
tain the desired output. Parameters are adjusted by the adaptation algorithm based
on the control error, which is the difference of the measured output and the expected
result according to the model.

In runtime software evolution, MRAC could applied to the modification of the
evolution mechanism at runtime. Since the controller uses the parameters received
from the adaptation algorithm to evolve the target system, the control actions im-
plemented by the controller could be adjusted dynamically by modifying the ref-
erence model used by the adaptation algorithm. The application of MRAC clearly
improves the dynamic nature of the evolution mechanism, which is important for
scenarios where the why dimension focuses on changes in requirements. Neverthe-
less, MRAC has a limited application in scenarios with high levels of uncertainty
because it is impractical to predict changes in the reference model.

8.5.3.2 Model Identification Adaptive Control (MIAC)

In MIAC, the reference model that allows parameter estimation is identified or in-
ferred at runtime using system identification methods. As depicted in Figure 8.6, the

242 Hausi Müller and Norha Villegas

Fig. 8.5: Model Reference Adaptive Control (MRAC)

control input and measured output are used to identify the reference model (system
identification). Then, the new model parameters are calculated and sent to the ad-
justment mechanism which calculate the parameters that will modify the controller.

Fig. 8.6: Model Identification Adaptive Control (MIAC)

In the context of runtime software evolution, MIAC could support the detection
of situations in which the current evolution strategy is no longer effective. Moreover,
it could be possible to exploit MIAC to adjust the evolution mechanism fully or
semi automatically. Since the reference model used to realize the controller’s actions

 Controller
System Model Target System

Transducer

+
-Reference

Input
Control

Error

Control
Input

Model Output

Measured
Output

Transduced
Output

Reference
Model

Controller Parameters

Adaptation
Algorithm

PID Controller

System Model
Target System

Transducer

+

-
Reference

Input

Control

Error

Control

Input

New Model Parameters

Measured

Output

Transduced

Output

System (Model)

Identification
Controller

 Parameters

Adjustment

Mechanism

8 Runtime Evolution of Highly Dynamic Software 243

is synthesized from the system, MIAC seems more suitable for highly uncertain
scenarios where the why dimension of software evolution corresponds to changes in
the environment.

8.6 Self-Adaptive Software Systems

Another dimension that has been used to characterize software evolution refers to
the types of changes to be performed in the evolution process [590], for which sev-
eral classifications have been proposed [170, 813]. In particular, the ISO/IEC stan-
dard for software maintenance proposes the following familiar classification: adap-
tive maintenance, defined as the modification of a software product after its delivery
to keep it usable under changing environmental conditions; corrective maintenance,
as the reactive modification of the system to correct faults; and perfective mainte-
nance, as the modification of the software to improve its quality attributes [424].
These maintenance types can be implemented using different self-adaptation ap-
proaches [739]. For example, adaptive maintenance can be realized through context-
aware self-reconfiguration, corrective maintenance through self-healing, and perfec-
tive maintenance through self-optimization. Self-adaptive software (SAS) systems
are software applications designed to adjust themselves, at runtime, with the goal
of satisfying requirements that either change while the system executes or depend
on changing environmental conditions. For this, SAS systems are usually instru-
mented with a feedback mechanism that monitors changes in their environment—
including their own health and their requirements—to assess the need for adapta-
tion [177, 221]. In addition to the monitoring component, the feedback mechanism
includes components to analyze the problem, decide on a plan to remedy the prob-
lem, effect the change, as well as validate and verify the new system state. This feed-
back mechanism, also called adaptation process, is similar to the continuous feed-
back process of software evolution characterized by the change mini-cycle model
(cf. Figure 8.1).

As analyzed in Section 8.3, under highly changing requirements and/or execu-
tion environments, it is desirable to perform evolution activities while the system
executes. In particular when the off-line evolution is expensive. By instrumenting
software systems with control capabilities supported by self-adaptation, it is possi-
ble to manage short-term evolution effectively. Indeed, the activities performed in
the adaptation process can be mapped to the general activities of software evolution
depicted by the change mini-cycle model. Therefore, self-adaptation can be seen as a
short-term evolution process that is realized at runtime. SAS system techniques can
greatly benefit the evolution of highly dynamic software systems such in the case of
the SMARTERCONTEXT monitoring infrastructure of our case study. The monitor-
ing requirements addressed by SMARTERCONTEXT are highly changing since they
depend on contracted conditions that may be modified after the e-commerce system
is in production. Therefore, to preserve the relevance of monitoring functionalities
with respect to the conditions specified in SLAs, SMARTERCONTEXT relies on self-

244 Hausi Müller and Norha Villegas

adaptation to address new functional requirements by evolving the monitoring in-
frastructure at runtime. This section introduces the engineering foundations of SAS
systems and illustrates their application to runtime software evolution.

To Probe Further

The survey article by Salehie and Tahvildari presents an excellent in-
troduction to the state of the art of SAS systems [739]. Their survey presents
a taxonomy, based on how, what, when and where to adapt software systems,
as well as an overview of application areas and selected research projects. For
research roadmaps on SAS systems please refer to [177, 221].

8.6.1 Self-Managing Systems

Self-managing systems are systems instrumented with self-adaptive capabilities to
manage (e.g., maintain or evolve) themselves given high-level policies from ad-
ministrators. and with minimal human intervention [457]. Autonomic computing,
an IBM initiative, aims at implementing self-managing systems able to anticipate
changes in their requirements and environment, and accommodate themselves ac-
cordingly, to address system goals defined by policies [457]. The ultimate goal of
autonomic computing is to improve the efficiency of system operation, maintenance,
and evolution by instrumenting systems with autonomic elements that enable them
with self-management capabilities. Systems with self-management capabilities ex-
pose at least one of the four self-management properties targeted by autonomic com-
puting: self-configuration, self-optimization, self-healing, and self-protection. This
subsection presents concepts from autonomic computing and self-managing sys-
tems that are relevant to the evolution of highly dynamic software systems.

8.6.2 The Autonomic Manager

The autonomic manager, illustrated in Figure 8.7, is the fundamental building block
of self-managing systems in autonomic computing. The autonomic manager can be
used to realize runtime evolution. For this, it implements an intelligent control loop
(cf. Figure 8.4) that is known as the MAPE-K loop because of the name of its el-
ements: the monitor, analyzer, planner, executor, and knowledge base. Monitors
collect, aggregate and filter information from the environment and the target system
(i.e., the system to be evolved), and send this information in the form of symptoms
to the next element in the loop. Analyzers correlate the symptoms received from
monitors to decide about the need for adapting the system. Based on business poli-
cies, planners define the maintenance activities to be executed to adapt or evolve the

8 Runtime Evolution of Highly Dynamic Software 245

system. Executors implement the set of activities defined by planners. The knowl-
edge base enables the information flow along the loop, and provides persistence for
historical information and policies required to correlate complex situations.

The autonomic manager implements sensors and effectors as manageability end-
points that expose the state and control operations of managed elements in the sys-
tem (e.g., the service that processes purchase orders and the managed servers in our
e-commerce scenario). Sensors allow autonomic managers to gather information
from both the environment and other autonomic managers. Effectors have a twofold
function. First they provide the means to feed autonomic managers with business
policies that drive the adaptation and evolution of the system. Second they provide
the interfaces to implement the control actions that evolve the managed element.
Managed elements can be either system components or other autonomic managers.

Sensor Effector

Monitoring Execution

Analysis Planning

Sensor Effector

Symptoms

Change

Request
Apply

Plan

Knowledge

Base

Fig. 8.7: The autonomic manager [457]. Each autonomic manager implements a
feedback loop to monitor environmental situations that may trigger the adaptation
of the system, analyze the need for adapting, plan the adaptation activities, and
execute the adaptation plan.

To Probe Further

One of the most important articles on the notion of an autonomic man-
ager and its applications is the 2006 IBM Technical Report entitled “An
Architectural Blueprint for Autonomic Computing (Fourth Edition)” [417].
In another article, Dobson et al. argue for the integration of autonomic
computing and communications and thus surveyed the state-of-the-art in
autonomic communications from different perspectives [258].

246 Hausi Müller and Norha Villegas

Figure 8.8 depicts the mapping (cf. dashed arrows) between phases of the soft-
ware evolution process defined by the change mini-cycle model (cf. white rounded
boxes in the upper part of the figure) and the phases of the MAPE-K loop imple-
mented by the autonomic manager (cf. gray rounded boxes at the bottom of the
figure). On the one hand, the change mini-cycle model characterizes the activi-
ties of the “traditional” long-term software evolution process which is performed
off-line [936]. On the other hand, the phases of the MAPE-K loop are realized at
runtime. Therefore, autonomic managers can be used to realize short-term software
evolution at runtime. The last two activities of the change mini-cycle model have
no mapping to the MAPE-K loop process. However, this does not mean that these
activities are not addressed in the implementation of self-adaptation mechanisms
for software systems. Validation and verification (V&V) refer to the implementa-
tion of assurance mechanisms that allow the certification of the system after its
evolution. Re-documentation concerns the preservation of the relevance of design
artifacts with respect to the new state of the evolved system. To realize runtime
evolution through self-management capabilities of software systems these activities
must also be performed at runtime. Indeed, these are challenging topics subject of
several research initiatives in the area of software engineering for self-adaptive and
self-managing software systems. In particular, assurance concerns can be addressed
through the implementation of V&V tasks along the adaptation feedback loop [823].
The preservation of the relevance between design artifacts and the evolving sys-
tem can be addressed through the implementation of runtime models [92]. Runtime
V&V and runtime models are foundational elements of SAS systems also addressed
in this chapter.

Request

Change

Analyze and

Plan Change

Implement

Change

Monitor Analyze Plan Execute

Validate and

Verify

Re-

documentation

Fig. 8.8: Mapping the phases of the software evolution change mini-cycle (cf. Fig-
ure 8.1) to the phases of the MAPE-K loop implemented by the autonomic manager
(cf. Figure 8.7)

8 Runtime Evolution of Highly Dynamic Software 247

8.6.3 The Autonomic Computing Reference Architecture

The autonomic computing reference architecture (ACRA), depicted in Figure 8.9,
provides a reference architecture as a guide to organize and orchestrate self-evolving
(i.e., autonomic) systems using autonomic managers. Autonomic systems based on
ACRA are defined as a set of hierarchically structured building blocks composed of
orchestrating managers, resource managers, and managed resources. Using ACRA,
software evolution policies can be implemented as resource management policies
into layers where system administrator (manual manager) policies control lower
level policies. System operators have access to all ACRA levels.

...

M
a

n
u

a
l
M

a
n

a
g

e
r
s

K
n

o
w

le
d

g
e

 S
o

u
r
c

e
s

Orchestra�ng Managers

Resource Managers

Managed Resources

Fig. 8.9: The Autonomic Computing Reference Architecture (ACRA) [417]

To Probe Further

Over the past thirty years, researchers from different fields have proposed
many three-layer models for dynamic systems. In particular, researchers from
control engineering, AI, robotics, software engineering, and service-oriented
systems have devised—to a certain extent independently—reference archi-
tectures for designing and implementing control systems, mobile robots,
autonomic systems, and self-adaptive systems. Seminal three-layer reference
architectures for self-management are the hierarchical intelligent control
system (HICS) [745], the concept of adaptive control architectures [48],
Brooks’ layers of competence [145], Gats Atlantis architecture [317], IBM’s
ACRA—autonomic computing reference architecture [417, 457], and Kramer

248 Hausi Müller and Norha Villegas

and Magee’s self-management architecture [478, 479]. Oreizy et al. intro-
duced the concept of dynamic architecture evolution with their the Figure 8
model separating the concerns of adaptation management and evolution man-
agement [668–670]. Dynamico is the most recent three-layer reference model
for context-driven self-adaptive systems [900]. The key idea in these layered
architectures is to build levels of control or competence. The lowest level
controls individual resources (e.g., manage a disk). The middle layer aims
to achieve particular goals working on individual goals concurrently (e.g.,
self-optimizing or self-healing). The highest level orchestrates competing or
conflicting goals and aims to achieve overall system goals (e.g., minimizing
costs).

ACRA is useful as a reference model to design and implement runtime evolution
solutions based on autonomic managers. For example, as depicted in Figure 8.10,
the ACRA model can be used to derive architectures that orchestrate the interac-
tions among managers, deployed at different levels, to control the evolution of goals,
models, and systems. Recall from Figure 8.3 that goals, models, and the structure
and behavior of systems correspond to the artifacts that characterize the what di-
mension of runtime software evolution (i.e., the elements of the system susceptible
to dynamic evolution). Runtime evolution mechanisms based on ACRA can take
advantage of both feedforward and feedback control. Feedforward control can be
implemented through the interactions between manual managers (i.e., business and
system administrators) and the autonomic managers deployed at each level of the
runtime evolution architecture (cf. dashed arrows in Figure 8.10). Feedback con-
trol can be exploited to orchestrate the evolution of related artifacts located at two
different levels (i.e., inter-level feedback represented by continuous arrows), and
to implement autonomic managers at each level of the architecture (i.e., intra-level
feedback control represented by autonomic managers). Thick arrows depict the in-
formation flow between knowledge bases and autonomic managers.

The evolution architecture depicted in Figure 8.10 applies to our e-commerce
scenario (cf. Section 8.2). Goals correspond to QoS requirements that must be satis-
fied for the retailers that use the e-commerce platform (e.g., performance as a mea-
sure of efficiency). Models correspond to specifications of the software architecture
configurations defined for each QoS requirement. System artifacts correspond to
the actual servers, components, and services. As explained in Section 8.5, feedback
control can be exploited to evolve the configuration of servers with the goal of guar-
anteeing system availability. For this, autonomic managers working at the top level
of the architecture monitor and manage changes in system goals. Whenever a goal is
modified, these managers use inter-level control to trigger the evolution of models at
the next level. Subsequently, autonomic managers in charge of controlling the evo-
lution of models provide managers at the bottom level with control actions that will
trigger the reconfiguration of the system. In this application scenario feedforward
enables the runtime evolution of the system to satisfy changes in requirements of
retailers. For example, when a new retailer becomes a customer, business adminis-

8 Runtime Evolution of Highly Dynamic Software 249

trators can feed the evolution mechanism with new goals to be satisfied. The defini-
tion of a new goal triggers the inter- and intra-level feedback mechanisms to evolve
models and systems according to the new requirement. When the new requirement
cannot be satisfied with existing models and adaptation strategies, feedforward al-
lows system administrators to feed the system with new ones.

M
a

n
u

a
l
M

a
n

a
g

e
r
s

K
n

o
w

le
d

g
e

 S
o

u
r
c

e
s

Evolving Goals Managers

Evolving Models Managers

Evolving Systems Managers

Feedforward

control

Inter-level

Feedback control

Intra-level

Feedback control

K-Base

Information flow

Legend

Fig. 8.10: A runtime evolution architecture based on ACRA supporting the evolution
of software artifacts at the three levels of the what dimension: goals, models, and
system structure and behavior. Dashed arrows represent feedforward control mecha-
nisms, continuous arrows inter-level feedback control mechanisms, autonomic man-
agers intra-level feedback control, and thick arrows the information flow between
autonomic managers and knowledge bases.

8.6.4 Self-Management Properties

In autonomic computing self-managing systems expose one or more of the fol-
lowing properties: self-configuration, self-optimization, and self-protection, self-
healing [457]. These properties are also referred to as the self-* adaptation prop-
erties of SAS systems and concern the how perspective of the runtime software evo-
lution dimensions depicted in Figure 8.3. Of course, they also relate to the why and
what perspectives since runtime evolution methods target evolution goals and affect
artifacts of the system. Self-* properties allow the realization of maintenance tasks
at runtime. For example, self-configuration can be used to realize adaptive mainte-
nance, which goal is to modify the system to guarantee its operation under chang-
ing environments; self-healing and self-protection to realize corrective maintenance,
which goal is to recover the system from failures or protect it from hazardous sit-
uations; and self-optimization to implement perfective maintenance, which goal is

250 Hausi Müller and Norha Villegas

usually to improve or preserve quality attributes. Each self-* property can be fur-
ther sub-classified. For example self-recovery is often classified as a self-healing
property.

Kephart and Chess characterized self-* properties in the context of autonomic
computing [457]. In this subsection we characterize these properties in the context
of runtime software evolution. Table 8.1 presents selected examples of self-adaptive
solutions characterized with respect to the three dimensions of runtime software
evolution depicted in Figure 8.3, where the how dimension corresponds to self-*
properties.

Table 8.1: Examples of self-adaptation approaches characterized with respect to the
why, what and how dimensions of runtime software evolution.

Approach Why What How

Cardellini et al. [166]
Changing environments

System structure

Self-configuration
Dowling and Cahill [261] System structure
Parekh et al. [678] System behavior
Tamura et al. [821] System structure
Villegas et al. [898] Changing requirements Structure/behavior

Kumar et al. [484]
Changing environments System structure Self-optimizationSolomon et al. [786]

Appleby et al. [44]

Baresi and Guinea [73]
Malfunctions

System behavior
Self-healingCandea et al. [156] System structure

Ehrig et al. [270] System behavior

White et al. [917] Malfunctions System behavior Self-protection

Self-Configuration

Self-configuration is a generic property that can be implemented to realize any other
self-* property. Systems with self-configuration capabilities reconfigure themselves,
automatically, based on high level policies that specify evolution goals, as well as
reconfiguration symptoms and strategies. Self-configuring strategies can affect ei-
ther the system’s behavior or structure. Behavioral reconfiguration can be achieved
by modifying parameters of the managed system, whereas structural reconfiguration
can be achieved by modifying the architecture. Self-configuration strategies can be
applied to our exemplar e-commerce system to guarantee new quality attributes that
may be contracted with retailers. This could be realized by reconfiguring the system
architecture at runtime based on design patterns that benefit the contracted quali-
ties [820]. In self-configuration approaches the why dimension of runtime software
evolution may correspond to changing requirements or environments, and malfunc-

8 Runtime Evolution of Highly Dynamic Software 251

tions, whereas the what dimension concerns the system structure or behavior, de-
pending on the way the target system is adapted.

The first group of approaches in Table 8.1 illustrates the application of self-
configuration as the means to runtime software evolution. The prevalent reason for
evolution (i.e., the why dimension) is changing environments, except the approach
by Villegas et al. whose reason for evolution is the need for supporting changes in re-
quirements. Cardellini and her colleagues implemented Moses (MOdel-based SElf-
Adaptation of SOA systems), a self-configuration solution for service selection and
workflow restructuring, with the goal of preserving selected quality attributes under
environmental disruptions [166]. To reconfigure the system, MOSES’s self-adaptive
solution, based on a runtime model of the system, calculates the service composi-
tion that better satisfies the QoS levels contracted with all the users of the system.
This mechanism is based on a linear programming optimization problem that allows
them to efficiently cope with changes in the observed variables of the execution en-
vironment. Downling and Cahill [261], as well as Tamura et al. [820, 821] proposed
self-configuration approaches applied to component-based software systems with
the goal of dealing with the violation of contracted qualities due to changes in the
environment. Both approaches use architectural reflection to affect the system struc-
ture. Self-adaptation approaches can be classified along a spectrum of techniques
that ranges from pure control-based to software-architecture-based solutions [899].
Control-based approaches are often applied to the control of the target system’s be-
havior and hardware infrastructure rather than its software architecture. Parekh et
al. proposed a more control theory oriented approach for self-configuration [678],
where the what dimension of software evolution concerns the system behavior. The
evolution objective in this case is also the preservation of quality properties, and the
evolution is realized through a controller that manipulates the target system’s tuning
parameters. Villegas et al. implemented SMARTERCONTEXT, a context manage-
ment infrastructure that is able to evolve itself to address changes in monitoring
requirements [894, 898]. SMARTERCONTEXT can support dynamic monitoring in
several self-adaptation and runtime evolution scenarios. In particular, they have ap-
plied their solution to support the runtime evolution of software systems with the
goal of addressing changes in SLA dynamically.

Self-Optimization

Perfective maintenance often refers to the improvement of non-functional properties
(i.e., quality requirements and ility properties) of the software system such as per-
formance, efficiency, and maintainability [170]. Perfective maintenance can be real-
ized at runtime using self-optimization. Self-optimizing systems adapt themselves
to improve non-functional properties according to business goals and changing en-
vironmental situations. For example, in our e-commerce scenario the capacity of
the system can be improved through a self-configuration mechanism implemented
to increase the number of services available for processing purchase orders. This op-
eration affects the software architecture of the system, and is performed to address

252 Hausi Müller and Norha Villegas

changing context situations (e.g., critical changes in the system load due to shop-
ping seasons or special offers that become extremely popular). Therefore, the what
dimension concerns the structure of the system, and the why dimension changing
environments that must be monitored continuously.

Examples of self-optimization mechanisms implemented through self-adaptation
are the Océno approach proposed by Appleby et al. [44], the middleware for data
stream management contributed by Kumar et al. [484], and the self-adaptation ap-
proach for business process optimization proposed by Solomon et al. [786]. Appleby
and her IBM colleagues proposed a self-optimization approach that evolves the in-
frastructure of an e-business computing utility to satisfy SLAs under peak-load sit-
uations. In their approach, self-adaptive capabilities support the dynamic allocation
of computing resources according to metrics based on the following variables: ac-
tive connections/server, overall response time, output bandwidth, database response
time, throttle rate, admission rate, and active servers. These variables constitute the
relevant context that is monitored to decide whether or not to evolve the system.
Kumar and colleagues proposed a middleware that exposes self-optimizing capabil-
ities, based on overlay networks, to aggregate data streams in large-scale enterprise
applications. Their approach deploys a data-flow graph as a network overlay over
the enterprise nodes. In this way, processing workload is distributed thus reducing
the communication overhead involved in transmitting data updates. The configura-
tion and optimization of the deployed overlay is performed by an autonomic module
that focuses on maximizing a utility function where monitoring conditions involve
several internal context variables. Solomon et al. proposed an autonomic approach
that evolves software systems to optimize business processes. At runtime, their ap-
proach predicts the business process that better addresses SLAs while optimizing
system resources. The prediction is based on a simulation model whose parameters
are tuned at runtime by tracking the system with a particle filter.

Balasubramanian et al. introduce a mathematical framework that adds structure
to problems in the realm of self-optimization for different types of policies [66].
Structure is added either to the objective function or the constraints of the optimiza-
tion problem to progressively increase the quality of the solutions obtained using the
greedy optimization technique. They characterized and analyzed several optimiza-
tion problems encountered in the area of self-adaptive and self-managing systems
to provide quality guarantees for their solutions.

Self-Healing

Corrective maintenance is a main issue in software evolution. In complex systems it
is particularly challenging due to the difficulty of finding the root cause of failures.
This is in part because the situation that triggers the failure may be no longer avail-
able by the time the analysis is performed. Self-healing systems are equipped with
feedback loops and runtime monitoring instrumentation to detect, diagnose, and fix
malfunctions that are originated from the software or hardware infrastructure. In
our e-commerce runtime evolution example, self-healing applies to the assurance

8 Runtime Evolution of Highly Dynamic Software 253

of the system availability. In particular, the runtime evolution strategy described in
Section 8.5 applies behavioral reconfiguration to control the maximum number of
connections that each server can satisfy, with the goal of having always processing
capacity available to replace faulty servers. In this situation, the what dimension of
runtime evolution corresponds to the behavior of the system, whereas the why corre-
sponds to malfunctions. The third group in Table 8.1 corresponds to runtime evolu-
tion approaches focused on self-healing. Self-healing evolution is usually triggered
by malfunctions, and can affect both the structure (e.g., Candea et al. [156]) and
behavior of the system (e.g., Baresi and Guinea [73], as well as Ehrigh et al. [270]).
Candea et al. built a self-recovery approach that uses recursive micro-reboots to opti-
mize the maintenance of Mercury, a commercial satellite ground station that is based
on an Internet service platform. Baresi and Guinea implemented a self-supervising
approach that monitors and recovers service-oriented systems based on user-defined
rules. Recovery strategies in their approach comprise a set of atomic recovery ac-
tions such as the rebinding and halt of services. Ehrigh et al. implemented self-
healing capabilities using typed graphs and graph-based transformations to model
the system to be adapted and the adaptation actions, respectively.

Self-Protection

Self-protection can be classified as perfective maintenance. Self-protected systems
are implemented with feedback loops to evolve themselves at runtime to counter-
act malicious attacks and prevent failures. White et al. proposed an approach and
methodology to design self-protecting systems by exploiting model-driven engi-
neering [917].

8.7 Self-Adaptation Enablers for Runtime Evolution

The continuing evolution of software systems, and the uncertain nature of execu-
tion environments and requirements have contributed to blur the line between de-
sign time (or development time) and runtime [72, 280]. As a result, activities that
have been traditionally performed off-line must now also be performed at runtime.
These activities include the maintenance of requirements and design artifacts, as
well as the validation and verification (V&V) of software system. This section sum-
marizes self-adaptation enablers from the perspective of runtime software evolution.
We concentrate on requirements and models at runtime as well as runtime monitor-
ing and V&V.

254 Hausi Müller and Norha Villegas

8.7.1 Requirements at Runtime

The concept requirements at runtime refers to the specification of functional and
non-functional requirements using machine-processable mechanisms [748]. As dis-
cussed in Chapter 1 requirements form part of the evolving artifacts in a software
system. Therefore, having requirement specifications available at runtime is partic-
ularly important for evolution scenarios where the why dimension corresponds to
changing requirements, and the what to system goals. Aspects of runtime software
evolution that rely on runtime specifications of requirements include:

• The specification of evolution goals and policies by business and system admin-
istrators.

• The control of evolving goals. For example, by the autonomic managers defined
at the first level of runtime software evolution in the ACRA-based architecture
depicted in Figure 8.10.

• The specification of adaptation properties that must be satisfied by evolution con-
trollers. Adaptation properties refer to qualities that are important for controllers
to operate reliably and without compromising the quality of the evolving system.
Examples of adaptation properties include properties gleaned from control en-
gineering such as short settling time, accuracy, small overshoot, and stability. A
characterization of these properties from the perspective of software systems is
available in [899].

• The monitoring of the execution environment and the system to identify the need
for evolution.

• The preservation of the context-awareness along the evolution process. Runtime
requirement specifications must maintain an explicit mapping with monitoring
strategies to the adaptation of monitoring infrastructures as required by the evo-
lution of the system.

• The management of uncertainty due to changes in requirements. Requirements
are susceptible to changes in the environment, user preferences, and business
goals. Thus, runtime specifications of requirements allow the system to main-
tain an explicit mapping between requirements and aspects that may affect
them [921]. Moreover, they are crucial for the re-documentation phase of the
software evolution process (cf. Figure 8.8), since they ease the maintenance of
the coherence between the actual system implementation and its documentation.

• The validation and verification of the system along the runtime evolution process
(cf. Figure 8.8). Requirements at runtime allow the specification of aspects to
validate and verify [823].

8.7.2 Models at Runtime

The concept models at runtime refers to representations of aspects of the system
that are specified in a machine-readable way, and are accessible by the system at

8 Runtime Evolution of Highly Dynamic Software 255

runtime. In the context of runtime software evolution, runtime models provide the
system with up-to-date information about itself and its environment. Moreover, run-
time models are themselves artifacts that evolve with the system (i.e., design speci-
fications as defined in the what dimension of software evolution, cf. Figure 8.3).

To Probe Further

The models@run.time research community defines a runtime model as
a “causally connected self-representation of the associated system that
emphasizes the structure, behavior, or goals of the system from a problem
space perspective” [52, 92, 115]. In the context of self-adaptation and
runtime evolution, the environment that affects the system in the accom-
plishment of its goals is also an aspect that requires runtime models for its
specification [177, 221, 823, 900].

Runtime models provide effective means to evolve software systems at runtime.
For example, in our e-commerce scenario administrators can modify the runtime
model that specifies the software architecture to be implemented to improve the
capacity of the system for processing purchase orders. The modification of the soft-
ware architecture model will trigger the adaptation of the software system. This
model-based evolution mechanism can be implemented using ACRA as depicted in
Figure 8.10. The middle layer contains the autonomic managers in charge of evolv-
ing runtime models.

Runtime models also support the implementation of runtime evolution mecha-
nisms based on adaptive control. In particular using MRAC and MIAC. In MRAC,
the reference model used by the adaptation algorithm corresponds to a runtime
model that can be adjusted dynamically to change the controller’s parameters (cf.
Figure 8.5). In this case the runtime model is adjusted using feedforward control,
that is by a mechanism external to the system (e.g., a human manager). In MIAC,
the reference model is also a runtime model but adjusted using system identification
methods. That is, the model is automatically adapted based on stimuli generated
within the boundaries of the system (cf. Figure 8.6).

In the context of runtime software evolution, runtime models are important
among others to represent evolution conditions, requirements and properties that
must be assured, monitoring requirements and strategies, and to evolve the system
or the evolution mechanism via model manipulation.

8.7.3 Runtime Monitoring

The why dimension of runtime software evolution characterizes reasons for evolving
the system (cf. Figure 8.3). Runtime monitoring concerns the sensing and analysis

256 Hausi Müller and Norha Villegas

of context information from the execution environment, which includes the system
itself, to identify the need for evolution.

Context can be defined as any information useful to characterize the state of in-
dividual entities and the relationships among them. An entity is any subject that
can affect the behavior of the system and/or its interaction with the user. Context
information must be modeled in such a way that it can be pre-processed after its ac-
quisition from the environment, classified according to the corresponding domain,
handled to be provisioned based on the systems requirements, and maintained to
support its dynamic evolution [896]. Based on this definition of context informa-
tion, and from the perspective of runtime software evolution, runtime monitoring
must support context representation and management to characterize the system’s
state with respect to its environment and evolution goals. Regarding context repre-
sentation, operational specifications of context information must represent seman-
tic dependencies among properties and requirements to be satisfied, evolution and
V&V strategies, and the context situations that affect the evolution of the system.
In highly uncertain situations, an important requisite is the representation of context
such that its specifications can adapt dynamically, according to changes in require-
ments and the environment. Regarding context management, monitoring solutions
must support every phase of the context information life cycle, that is context acqui-
sition, handling, provisioning, and disposal. Context acquisition concerns the sens-
ing of environmental information, handling refers to the analysis of the sensed infor-
mation to decide whether or not to evolve the system, context provisioning allows
evolution planers and executors to obtain environmental data that affect the way of
evolving the system, and context disposal concerns the discard of information that is
no longer useful for the evolution process. Moreover, to preserve context-awareness
along the evolution process, monitoring infrastructures must be instrumented with
self-adaptive capabilities that support the deployment of new sensors and handlers.
For example, in our e-commerce scenario changes in the requirements due to the
need for serving a new customer may imply new context types to be monitored.

8.7.4 Runtime Validation and Verification

Software validation and verification (V&V) ensures that software products satisfy
user requirements and meet their expected quality attributes throughout their life cy-
cle. V&V is a fundamental phase of the software evolution process [936]. Therefore,
when the evolution is performed at runtime, V&V tasks must also be performed at
runtime [823].

Aspects of runtime V&V that require special attention in the context of run-
time software evolution include: (i) the dynamic nature of context situations; (ii)
what to validate and verify, and its dependency on context information; (iii) where
to validate—whether in the evolving system or the evolution mechanism; and (iv)
when to perform V&V with respect to the adaptation loop implemented by evolu-
tion controllers. Researchers from communities related to SAS systems have argued

8 Runtime Evolution of Highly Dynamic Software 257

for the importance of instrumenting the adaptation process with explicit runtime
V&V tasks [221, 823]. In particular by integrating runtime validators and veri-
fiers—associated with the planning phase of evolution controllers, and V&V moni-
tors—associated with the monitoring process. The responsibility of runtime valida-
tors & verifiers is to verify each of the outputs (i.e., evolution plans) produced by
the planner with respect to the properties of interest. The execution of an adaptation
plan on a given system execution state implies a change of the system state. There-
fore, the verification requirements and properties should be performed before and/or
after instrumenting the plan. The responsibility of V&V monitors is to monitor and
enforce the V&V tasks performed by runtime validators & verifiers.

8.8 Realizing Runtime Evolution in SMARTERCONTEXT

Figure 8.11 depicts a partial view of the software architecture of SMARTERCON-
TEXT using Service Component Architecture (SCA) notation. Further details about
this architecture are available in [894]. SCA defines a programming model for build-
ing software systems based on Service Oriented Architecture (SOA) design princi-
ples [665]. It provides a specification for both the composition and creation of ser-
vice components. Components are the basic artifacts that implement the program
code in SMARTERCONTEXT. Services are the interfaces that expose functions to
be consumed by other components. References enable components to consume ser-
vices. Composites provide a logical grouping for components. Wires interconnect
components within a same composite. In a composite, interfaces provided or re-
quired by internal components can be promoted to be visible at the composite level.
Properties are attributes modifiable externally, and are defined for components and
composites. Composites are deployed within an SCA domain that generally corre-
sponds to a processing node.

Component GoalsManager has a twofold function. First, it allows system ad-
ministrators to modify system goals (e.g. SLAs) at runtime. These changes in SLAs
imply modifications in the monitoring requirements thus triggering the runtime evo-
lution of SMARTERCONTEXT. Second, it enables system administrators to define
and modify context reasoning rules as part of the evolution of the monitoring infras-
tructure at runtime. Components ContextManager and DynamicMonitoringInfras-
tructure implement the context monitoring functionalities of SMARTERCONTEXT.
ContextManager includes software artifacts that integrate context information into
context repositories, maintain and dispose existing contextual data, provide intro-
spection support, and update the inventory of components managed dynamically
as part of the runtime evolution process. DynamicMonitoringInfrastructure corre-
sponds to the adaptive part of the monitoring infrastructure, and implements the
context gathering, processing and provisioning tasks. In the case study described in
Section 8.2, these tasks are performed by the components depicted within the dark
gray box in Figure 8.11, ContextGatheringAndPreprocessing and ContextMonitor-
ing. These components are deployed as part of the runtime evolution process to

258 Hausi Müller and Norha Villegas

monitor the new bandwidth quality factor that is added after renegotiating the per-
formance SLA. Component MFLController includes the artifacts that implement the
feedback loop in charge of controlling the runtime evolution of our context manage-
ment infrastructure.

The two AdaptationMiddleware components are an abstraction of FraSCAti [763]
and QoS-CARE [820, 821], which constitute the middleware that provides the struc-
tural adaptation capabilities that allow the evolution of SMARTERCONTEXT at run-
time.

ContextMFL
Monitor

Dynamic Context Management Server

GoalsManager
System

Administrator
GUI

ContractSpec
Generator

MFL-Controller

ContextMFL
Analyzer

ContextMFL
Planner

ContextMFL
Executor

QoSCare
Frascati

Context
Manager

Introspection

AdaptationMiddlewareContextManager

Target System Server

RDF
Sensor1

MonitoredSystem

RDF
SensorN

DynamicMonitoringInfrastructure

Context
GatheringAnd
Preprocessing

Sensor1
<<Dynamic>>

Context
Monitoring

<<Dynamic>>

monitorong
Logic

context
Variables

sensorType
contracted
MeasureUnit

QoSCare
Frascati

Abstraction of the
Frascati middleware and all the
components of the QoS Care

adaptation infrastructure

AdaptationMiddleware

Observed
Entity

1..N

Context
GatheringAnd
Preprocessing

SensorN
<<Dynamic>>

SensorType
Contracted
MeasureUnit

1..N

Structural
Adaptation

Behavioral
and Structural

Adaptation

analyzeMonReq
(RDFSpecification,

RDFSpecification):void

planMonitoringStrategy(RDFSpecification,Model)
:void

executeAdaptation
(InputStream[],String,

List<String>,List<String>):
void

registerStrategy
(MonitoringStrategy):

void

pushContext
(String):
boolean

pushContext
(String):boolean

processContext
(String, String):void

provisioning
Context

(String):void

symptom
Event

Context
Monitoring

<<Dynamic>>

processContext
(String, String):void

provisioning
Context (String):void

Deployed into
the existing

composite after the
modification of the

SLA

gatherRDFSpecification(String,String):boolean

Context
Provisioning

<<Dynamic>>

provisioningContext
(String):void

executeAdaptation
(InputStream[],String,
List<String>,List< String>):void

executeAdaptation
(InputStream[],String,

List<String>,List<String>):void

frequency frequency

Fig. 8.11: SMARTERCONTEXT’s software architecture. The components depicted
within the dark gray box represent software artifacts deployed dynamically as a
result of the runtime evolution process.

8.8.1 Applying the MAPE-K Loop Reference Model

Composite MFL-Controller is an implementation of the MAPE-K loop reference
model that enables our monitoring infrastructure with dynamic capabilities to evolve
at runtime through the adaptation of (i) the set of context reasoning rules supported
by the reasoning engine, (ii) the context monitoring logic that evaluates gathered

8 Runtime Evolution of Highly Dynamic Software 259

context against monitoring conditions, and (iii) the context gathering and provision-
ing infrastructure.

The initial component of composite MFL-Controller is ContextMFLMonitor.
This component receives the SLA specification in XML/RDF format from the user,
creates an RDFSpecification object from the received specification, looks for a pre-
vious version of this SLA, stores the new SLA specification in its knowledge base,
and finally provides component ContextMFLAnalyzer with two RDFSpecification
objects that represent the new and former (if applicable) SLA specifications. SLA
specifications in SMARTERCONTEXT are named control objectives (COb) specifi-
cations since they refer to the goals that drive the adaptive behavior of the system.
[822]. SMARTERCONTEXT realizes COb specifications using Resource Description
Framework (RDF) models [894]. RDF is a semantic web framework for realizing
semantic interoperability in distributed applications [558].

The second component of the MFL-Controller composite is ContextMFLAna-
lyzer, which is in charge of analyzing changes in COb specifications, and specifying
these changes in an RDF model. After analyzing changes in COb specifications, this
component invokes ContextMFLPlanner and provides it with the new COb specifi-
cation and the model that specifies the changes. If there is not previous COb spec-
ification, ContextMFLAnalyzer simply provides ContextMFLPlanner with the new
COb specification and a null Model.

The third component of this MAPE-K loop is ContextMFLPlanner. This com-
ponent is in charge of synthesizing new monitoring strategies as well as changes
in existing ones. We define monitoring strategies as an object that contains (i) a
set of implementation files for the SCA components to be deployed, the specifica-
tion of the corresponding SCA composite, and two lists that specify SCA services
and corresponding references. These services and references allow the connection
of sensors exposed by the monitored third parties to context gatherers exposed by
the SMARTERCONTEXT infrastructure, and context providers’ gatherers exposed
by third parties to context providers exposed by the SMARTERCONTEXT infras-
tructure; or (ii) a set of context reasoning rules to be added or deleted from the
SMARTERCONTEXT’s reasoning engine.

The last component of composite MFL-Controller is ContextMFLExecutor. This
component invokes the services that will trigger the adaptation of the context mon-
itoring infrastructure. The SMARTERCONTEXT monitoring infrastructure can be
adapted at runtime by either (i) changing the set of context reasoning rules, (ii)
modifying the monitoring logic, (iii) deploying new context sensors, and context
gathering, monitoring and provisioning components. The case study presented in
this chapter concerns mechanisms (ii) and (iii).

Table 8.2 summarizes the self-adaptive capabilities of SMARTERCONTEXT that
allow its runtime evolution. The first column refers to changes in COb specifications
that may trigger the evolution of SMARTERCONTEXT at runtime; the second column
presents the type of control action used to adapt the monitoring infrastructure; the
third column describes the evolution effect obtained on SMARTERCONTEXT after
performing the adaptation process.

260 Hausi Müller and Norha Villegas

Table 8.2: Self-adaptive capabilities of SMARTERCONTEXT that support its evolu-
tion at runtime

3pt4pt

Changes in COb
Specifications Control Actions Evolution Effects

Addition/deletion of reason-
ing rules

Parameters (i.e., RDF rules)
affecting the behavior of
SMARTERCONTEXT

Modified reasoning capabili-
ties of the reasoning engine

Addition/deletion of context
providers and/or consumers

Discrete operations affecting the
SMARTERCONTEXT software ar-
chitecture

Changes in the set of de-
ployed context sensing, gath-
ering, and provisioning com-
ponents

Addition or renegotiation
of system objectives

Parameters (i.e., arithmetic and
logic expressions) affecting the
behavior of SMARTERCONTEXT

Changes in existing monitor-
ing logic

Discrete operations affecting the
SMARTERCONTEXT software ar-
chitecture

Changes in the set of de-
ployed context sensing, gath-
ering, monitoring and provi-
sioning components

8.8.2 Applying Requirements and Models at Runtime

To control the relevance of the monitoring mechanisms implemented by SMARTER-
CONTEXT with respect to control objectives (e.g., the contracted QoS specified in
SLAs), it is necessary to model and map these objectives explicitly to monitoring re-
quirements. These models must be manipulable at runtime. This section illustrates
the use of models at runtime to maintain operative specifications of requirements
and evolving monitoring strategies during execution.

Control objectives (COb) specifications allow SMARTERCONTEXT to synthesize
new and change existing monitoring strategies according to changes in contracted
conditions. In the case study described in Section 8.2, COb specifications corre-
spond to SLAs that not only define the contracted QoS and corresponding metrics,
but also specify monitoring conditions associated with metrics, sensing interfaces
and guarantee actions.

8.8.2.1 Control Objectives Specifications

Figure 8.12 represents, partially, a COb specification for the performance SLA that
resulted from the first negotiation in our case study. This specification is a concrete
instantiation of the control objectives ontology for QoS contracts in SMARTER-
CONTEXT. This ontology allows the specification of control objectives (e.g., SLAs)
mapped to elements of both monitoring strategies and adaptation mechanisms rep-

8 Runtime Evolution of Highly Dynamic Software 261

resented by entities derived from the context monitoring strategy (cms) ontology
[894].

throughput

cob:definesQA

cob:hasGuarantee

sla.rdf#SLA001 qa:Performance

qa:Throughput

qa:ThroughputMetric cob:measuredThrough

sla.rdf#ActionGurantee
Throughput

qa:Throughput
MeasureUnit

qa:processingTime

cob:hasVariable

sla.rdf#gathering
ServiceThroughput

sla.rdf#adaptTarget
System

?processingTime
<=2000

cms:hasExpression

cms:gathering
Service cms:sensorType

cms:hasMeasureUnit

cms:hasMeasure
Unit

ms/request

cms:hasLabel

Throughput
Event

cob:triggers
EventType

ApacheSensorThroughput/
gatheringServiceThroughput

cms:consumedByReference
QoSCare/adapttargetsystem

Quality attributes vocabulary qa: http://smartercontext.org/vocabularies/rdf/qa.rdf
Control objectives specification example http://smartercontext.org/examples/thesis/sla-performance-SOACaseStudy-V1.rdf

cob:definedByQF

http:SOAGovApp:8080/
AdminGUI

cms:hasTargetsla.rdf#notify
Administrator

cms:provisioning
Reference

cms:hasBinding

Fig. 8.12: A control objectives specification example for the throughput quality at-
tribute defined in the first negotiation of the performance SLA.

Namespace qa: corresponds to the vocabulary that characterizes quality at-
tributes mapped to quality factors in the study. This version of the performance
SLA defines a throughput quality factor, measured through a throughput metric
(qa:ThroughputMetric) that is composed of a single variable (qa:processingTime).
This variable is involved in the metric expression ?processingTime ≤ 2000, mea-
sured in terms of ms/request (as defined in the element qa:ThroughputMeasureUnit)
and associated with a service identified as sla.rdf#gatheringServiceThroughput. The
action guarantee sla.rdf#ActionGuaranteeThroughput associated with the through-
put quality factor is associated with two provisioning references. The first one,
sla.rdf#adaptTargetSystem is to invoke the service in charge of activating the adap-
tation process. The second one, sla.rdf#notifyAdministrator, is to inform business
administrators about the violation of the contracted throughput conditions.

262 Hausi Müller and Norha Villegas

8.8.2.2 Synthesizing Monitoring Strategies at Runtime

In SMARTERCONTEXT monitoring strategies can be generated dynamically from
COb specifications such as the one depicted in Figure 8.12. A monitoring strat-
egy is defined as DynamicMonitoringInfrastructure composite (cf. the architec-
ture depicted in Figure 8.11) that specifies components for context gathering, pre-
processing, monitoring, and provisioning. These strategies are dynamic because
SMARTERCONTEXT supports at runtime the modification of the monitoring logic,
and, enabled by an architectural adaptation middleware, the deployment of new con-
text management components.

Figure 8.13 illustrates, for the case study presented in this chapter, the genera-
tion of the DynamicMonitoringInfrastructure composite (cf. the highlighted com-
posite in the same figure) from the COb specification presented in Figure 8.12.
The RDF subgraphs associated with elements sla.rdf#ActionGuaranteeThorughput
and qa:ThroughputMetric constitute the foundational elements for generating the
DynamicMonitoringInfrastructure composite. The dotted connectors associate ele-
ments of the COb specification with the corresponding architectural artifact. For ex-
ample, the connector labeled with number 1 indicates that component ContextMon-
itoring is dynamically generated from metric qa:ThroughputMetric.

When an existing SLA is renegotiated, the GoalsManager composite generates
a new COb specification. Then, component ContextMFLMonitor defined in com-
posite MFL-Controller gathers this specification, analyzes whether it corresponds
to renegotiated SLA, and if so, generates a new plan with consists of the set of new
context gathering and monitoring components to be deployed. Finally, the Con-
textMFLExecutor component executes the plan to deploy the new components.

8.9 Open Challenges

Many challenges remain open in the engineering of software systems with self-
adaptive capabilities. Cheng et al. [177], as well as de Lemos et al. [221] charac-
terize a comprehensive set of open questions and opportunities that are important
to advance the field. The research roadmap by Cheng et al. focuses on development
methods, techniques and tools required for the engineering of self-adaptive systems.
This first roadmap groups challenges into four main topics: modeling dimensions,
requirements, engineering, and assurances. The research roadmap by de Lemos et al.
complements the first one while focusing on a different set of topics: design space,
processes, decentralization of control loops, and practical runtime verification and
validation (V&V).

Most difficult challenges in self-adaptation relate to the lack of effective meth-
ods for assuring the dynamic behavior of adaptive systems under high levels of
uncertainty. In this realm control science and runtime models are research areas that
deserve special attention. Control science can be defined as a systematic way to
study certifiable V&V methods and tools to allow humans to trust decisions made

8 Runtime Evolution of Highly Dynamic Software 263

Throughput

qa:ThroughputMetric

qa:processingTime

cob:hasVariable

sla.rdf#gathering
ServiceThroughput

?processingTime
<=2000

cms:hasExpression

cms:hasGathering
Service cms:sensorType

ThroughputSensor/
sendSensedData

cms:consumedByReference

qa:Throughput
MeasureUnit

cms:hasMeasureUnit

ms/request

cms:hasLabel

sla.rdf#ActionGurantee
Throughput

sla.rdf#adaptTarget
System

Throughput
Event

cob:triggers
EventType

QoSCare/adapttargetsystem

cms:hasTarget

QoSCare
Frascati

AdaptationMiddlewareprovisioningContext
(String):void

RDF
Sensor1

TargetSystem
(Third Party)

DynamicMonitoringInfrastructure

Context
GatheringAnd
Preprocessing

Sensor1
<<Dynamic>>

Context
Monitoring

<<Dynamic>>

monitorong
Logic

context
Variables

sensorType
contracted
MeasureUnit

Observed
Entity

pushContext
(String):
boolean

processContext
(String, String):void

provisioning
Context

(String):void

symptom
Event

Context
Provisioning

<<Dynamic>>

frequency

1

Fig. 8.13: Synthesizing monitoring strategies dynamically. The dashed connectors
associate the element from the COb specification to the corresponding architectural
artifact in the architecture.

by self-adaptive systems. In a 2010 report, Dahm identified control science as a
top priority for the US Air Force (USAF) science and technology research agenda
for the next 20 years [212]. Certifiable V&V methods and tools are critical for the
success of self-adaptive systems. One systematic approach to control science for
adaptive systems is to study V&V methods for the mechanisms that sense the dy-
namic environmental conditions and the target system behavior, and act in response
to these conditions by answering the questions what, when and how to adapt [823].

Research on models at runtime study the exploitation of models available while
the system executes. The goal is to provide effective mechanisms for complexity
management in software systems whose behavior evolves at runtime [52]. Run-
time models have been recognized as important enablers for the assurance of self-
adaptive systems. We identified three subsystems that are key in the design of effec-
tive context-driven self-adaptation: the control objectives manager, the adaptation
controller, and the context monitoring system [900]. These subsystems represent
three levels of dynamics in self-adaptation that can be controlled through three feed-

264 Hausi Müller and Norha Villegas

back loops, i.e., the control objectives, the adaptation, and the monitoring feedback
loops, respectively. We argue that runtime models provide abstractions that are cru-
cial to support the feedback loops that control these three levels of dynamics. From
this perspective, models at runtime could be developed specifically for each level
of dynamics to support the control objectives manager, adaptation controller, and
the monitoring system. At the control objectives level, models at runtime represent
requirements specifications subject to assurance in the form of functional and non-
functional requirements. At the adaptation level, models at runtime represent states
of the managed system, adaptation plans and their relationships with the assurance
specifications. At the monitoring level, models at runtime represent context entities,
monitoring requirements, as well as monitoring strategies and their relationships
with assurance criteria and adaptation models.

8.10 Conclusions

This chapter presented fundamental concepts of control and self-adaptive systems
engineering, and their application to runtime software evolution. Departing from
seminal aspects of “traditional” software evolution such as the change mini-cycle,
Lehman’s laws, and dimensions of software evolution, we discussed the complex
dynamics of software systems and the way runtime software evolution can help deal
with this complexity. Self-adaptation can be considered as short-term software evo-
lution. Therefore, foundational concepts of self-adaptive software such as feedback,
feedforward and adaptive control, the MAPE-K loop, ACRA reference architecture
and self-* properties; and enabling mechanisms, such as requirements and models
at runtime, context monitoring, and runtime V&V must be well understood by re-
searchers, engineers and students interested in the evolution of highly dynamic and
continuously running software systems.

It is important to point out that despite its benefits, runtime evolution is not al-
ways the best solution. We analyzed the need for runtime software evolution using
the notion of its benefit cost ratio based on three selected variables: frequency of
changes in requirements and environments, uncertainty, and off-line evolution cost.
As part of this analysis we discussed trade-offs between runtime software evolution
and the complexity added by the software artifacts required to automate software
evolution tasks.

Rather than providing an exhaustive explanation of the application of self-
adaptation and control theory to the engineering of runtime evolution mechanisms,
or present new approaches to solve existing software evolution challenges, the goal
of this chapter is to provide practitioners, researchers, and students with an overview
of how the research work that is being conducted in the field of self-adaptive soft-
ware relates to software evolution.

	Chapter 8 Runtime Evolution of Highly Dynamic Software
	8.1 Introduction
	8.2 A Case Study: Dynamic Context Monitoring
	8.3 Assessing the Need for Runtime Evolution
	8.4 Dimensions of Runtime Software Evolution
	8.5 Control in Runtime Software Evolution
	8.5.1 Feedback Control
	8.5.2 Feedforward Control
	8.5.3 Adaptive Control
	8.5.3.1 Model Reference Adaptive Control (MRAC)
	8.5.3.2 Model Identification Adaptive Control (MIAC)

	8.6 Self-Adaptive Software Systems
	8.6.1 Self-Managing Systems
	8.6.2 The Autonomic Manager
	8.6.3 The Autonomic Computing Reference Architecture
	8.6.4 Self-Management Properties

	8.7 Self-Adaptation Enablers for Runtime Evolution
	8.7.1 Requirements at Runtime
	8.7.2 Models at Runtime
	8.7.3 Runtime Monitoring
	8.7.4 Runtime Validation and Verification

	8.8 Realizing Runtime Evolution in SMARTERCONTEXT
	8.8.1 Applying the MAPE-K Loop Reference Model
	8.8.2 Applying Requirements and Models at Runtime
	8.8.2.1 Control Objectives Specifications
	8.8.2.2 Synthesizing Monitoring Strategies at Runtime

	8.9 Open Challenges
	8.10 Conclusions

