
© 2013 Carnegie Mellon University

Coordinating Architecture-Based
Self-Protecting Systems

Presenter: Scott Hissam
shissam@sei.cmu.edu

Date: September 11, 2013

2 © 2013 Carnegie Mellon University

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHEDON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0000595

3 © 2013 Carnegie Mellon University

Project Introduction – Problem

Do more for less—budgets are coming under increasing pressure
•  Reuse: software architectures and components (off-the-shelf and otherwise)
•  Open and common interfaces: better integration between systems

Intent is to achieve economies of scale for producing software

However, cyber attackers also achieve economies of scale for attacking
software
•  Increases the pool of potential targets of like systems

Economic disparity
•  Producers need to defend against all attacks, a priori, for that which is

presently known
•  Attackers need only to find one exploit in a common part to inflict wide-spread

damage

4 © 2013 Carnegie Mellon University

Project Introduction – Solution

Improve the ability to resist attacks on systems with common
architectures by sharing threat information and using coordinated
architecture-based self-adaptation.

Key idea: exploit commonality to gain a defense advantage
•  Coordination based on threat information exchange to enable proactive

defense.
•  Proactive adaptation allows changes to be done in time to resist the attack.
•  Architecture-based adaptation makes explicit quality attribute tradeoffs.

reactive proactive

no

yes

Self-Protecting (SP)
[Yuan 2012]

Moving Target (MT)
[Evans 2011]

Architecture-Based
Self-Protecting (ABSP)

[Yuan 2013]

Coordinating
 Architecture-Based

 Self-Protecting (CABSP)

observed
probabilistic
[Poladian 2007] none

information

timing tr
ad

eo
ff

an
al

ys
is

5 © 2013 Carnegie Mellon University

CABSP Proof of Concept

*Weyns, D., Schmerl, B., Grassi, V., Malek, S.,
Mirandola, R., Prehofer, C.,Wuttke, J., Andersson,
J., Giese, H., Goschka, K., On Patterns for
Decentralized Control in Self-Adaptive Systems,
Software Engineering for Self-Adaptive Systems
II, Lecture Notes in Computer Science, Vol 7475,
pp 76-107, 2013

MAPE Information
Sharing Pattern*

+Image of the Kagura Villain is licensed under the Creative Commons Attribution 3.0 Unported license with attribution to Davmandy at en.wikipedia

Secure coordination “bus”

Cyber villian+ Web surfer

attack
normal use
published threat
subscribed threat event

legend

Hutchins, E., Clopperty, M., Amin, R., “Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill
Chains”, 6th Annual International Conference on Information Warfare and Security, Washington, DC, 2011.

•  Serial or Parallel attack

•  Port scanning, DoS,
system crash

•  Maintain throughput

6 © 2013 Carnegie Mellon University

Intended results

Goal: Deny the possibility of reusing attacks on systems that use
common architectures.
Success evaluation:
•  In our CABSP proof of concept consisting of a collection of similar systems:
– No threat: instances’ and aggregate throughput is higher than with MT.
– Threat: instances’ and aggregate throughput is higher than with SP.

Produce the following:
•  Algorithm for proactive adaptation
– promoting diversity, and avoiding vulnerable variant when attacked

•  Architecture for coordinated adaptation
– what information and how to exchange it to guide adaptation

•  Proof of concept
– based on Rainbow’s ZNN.com (revised as needed)
– different defense approaches: MT, SP, CABSP

7 © 2013 Carnegie Mellon University

Team: Coordinating Architecture-Based Self-
Protecting Systems
Members
•  Javier Camara
• David Garlan
•  Jeffrey Gennari
• Scott Hissam
• Mark Klein
• Gabriel Moreno
•  Linda Northrop
• Bradley Schmerl
• Greg Shannon

Contributing Work
• CMU’s Rainbow (self-adaptation

framework)
• SEI’s Architecture Tradeoff

Analysis
• SEI’s Software Architecture

Modeling
• SEI’s Software Product Lines

8 © 2013 Carnegie Mellon University

Questions

9 © 2013 Carnegie Mellon University

10 © 2013 Carnegie Mellon University

Plan of research
Primary goal: Use CABSP to improve the ability of systems with common
architectures to proactively resist attacks.
Hypothesis: CABSP-based systems will maintain higher throughput than systems
that use other defenses (e.g. MT and SP).
•  Key questions:

•  How and what do we communicate to coordinate adaptation?
•  How do we determine and quantify whether and when an adaptation will be

effective in other, similar systems?
Experiments:
•  Scenario based
–  Implement proof of concept with specific attack scenarios and different

defensive approaches
•  Defense: CABSP, MT, and SP.
•  Attacks: port scanning, DoS, system crash (in series or parallel).

–  Metric: throughput of the collection of systems
•  To maintain high throughput constituent systems must remain alive,

and performance overhead must be kept low.

