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Project Introduction  – Problem    

Do more for less—budgets are coming under increasing pressure 
•  Reuse: software architectures and components (off-the-shelf and otherwise) 
•  Open and common interfaces: better integration between systems 

 

Intent is to achieve economies of scale for producing software 
 

However, cyber attackers also achieve economies of scale for attacking 
software 
•  Increases the pool of potential targets of like systems 

 

Economic disparity 
•  Producers need to defend against all attacks, a priori, for that which is 

presently known 
•  Attackers need only to find one exploit in a common part to inflict wide-spread 

damage 
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Project Introduction  – Solution   

Improve the ability to resist attacks on systems with common 
architectures by sharing threat information and using coordinated 
architecture-based self-adaptation. 
 
 
 
 
 
 
Key idea: exploit commonality to gain a defense advantage 
•  Coordination based on threat information exchange to enable proactive 

defense. 
•  Proactive adaptation allows changes to be done in time to resist the attack.  
•  Architecture-based adaptation makes explicit quality attribute tradeoffs. 
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CABSP Proof of Concept 

*Weyns, D., Schmerl, B., Grassi, V., Malek, S., 
Mirandola, R., Prehofer, C.,Wuttke, J., Andersson, 
J., Giese, H., Goschka, K., On Patterns for 
Decentralized Control in Self-Adaptive Systems, 
Software Engineering for Self-Adaptive Systems 
II, Lecture Notes in Computer Science, Vol 7475, 
pp 76-107, 2013 

MAPE Information 
Sharing Pattern* 

+Image of the Kagura Villain is licensed under the  Creative Commons Attribution 3.0 Unported license with attribution to  Davmandy at en.wikipedia 

Secure coordination “bus” 

Cyber villian+ Web surfer 

attack
normal use
published threat
subscribed threat event

legend 

Hutchins, E., Clopperty, M., Amin, R., “Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill 
Chains”, 6th Annual International Conference on Information Warfare and Security, Washington, DC, 2011. 

•  Serial or Parallel attack 

•  Port scanning, DoS, 
system crash 

•  Maintain throughput 
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Intended results 

Goal: Deny the possibility of reusing attacks on systems that use 
common architectures. 
Success evaluation: 
•  In our CABSP proof of concept consisting of a collection of similar systems: 
– No threat: instances’ and aggregate throughput is higher than with MT. 
– Threat: instances’ and aggregate throughput is higher than with SP. 

Produce the following: 
•  Algorithm for proactive adaptation 
– promoting diversity, and avoiding vulnerable variant when attacked 

•  Architecture for coordinated adaptation 
– what information and how to exchange it to guide adaptation 

•  Proof of concept 
– based on Rainbow’s ZNN.com (revised as needed) 
– different defense approaches: MT, SP, CABSP 
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Team: Coordinating Architecture-Based Self-
Protecting Systems 
Members 
•  Javier Camara 
• David Garlan 
•  Jeffrey Gennari 
• Scott Hissam 
• Mark Klein 
• Gabriel Moreno 
•  Linda Northrop 
• Bradley Schmerl 
• Greg Shannon 

 

Contributing Work 
• CMU’s Rainbow (self-adaptation 

framework) 
• SEI’s Architecture Tradeoff 

Analysis 
• SEI’s Software Architecture 

Modeling 
• SEI’s Software Product Lines 
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Questions 
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Plan of research      
Primary goal: Use CABSP to improve the ability of systems with common 
architectures to proactively resist attacks. 
Hypothesis: CABSP-based systems will maintain higher throughput than systems 
that use other defenses (e.g. MT and SP). 
•  Key questions: 

•  How and what do we communicate to coordinate adaptation?  
•  How do we determine and quantify whether and when an adaptation will be 

effective in other, similar systems? 
Experiments: 
•  Scenario based 
–  Implement proof of concept with specific attack scenarios and different 

defensive approaches 
•  Defense: CABSP, MT, and SP. 
•  Attacks: port scanning, DoS, system crash (in series or parallel). 

–  Metric: throughput of the collection of systems 
•  To maintain high throughput constituent systems must remain alive, 

and performance overhead must be kept low. 


