Engineering Adaptive Software Systems (EASSY) 2013

Dynamic Self-Adaptive Software Technology Using Collective Intelligence

Sep. 9 2013

Center for Autonomous and Adaptive Software (CAAS) Korea University

Hoh Peter In

Content

- ***** Introduction
- ***** Challenges
- **Our Focus**
- **Proposed Work**
- **\$ Q / A**

Introduction — IT Ecosystem

Introduction — Mega Ecosystem

Challenges

Increasing complex and diverse systems (SoS)

Limits of human intervention

Vulnerability due to dynamic changes

Solution Approach

SE support for Adaptization

Software Engineering methodology and tools
To transform from existing non-adaptable software
to adaptable software systematically

Global KU Frontier Spirit

Research Trends/Focus

SW-Driven System-Driven	Current Research		Our Research Focus	
	۰	One Robot / Homogeneous	•	Multiple Robots / Heterogeneous
	•	Centralized Decision	•	Distributed Decision
	•	Simple Knowledge Based (Syntactic)	•	Ontological Knowledge Based (Semantic)
	•	Adaptive System	•	Adaptive System of Systems
	•	Ad-hoc Design	•	Adaptization

Our Focus: Heterogeneous

- **❖** Self-Adaptive Mechanism for Multiple Robots(Systems)
 - Interaction among systems
- * Knowledge interoperability between heterogeneous systems/robots
 - Data interoperability

One Robot / Homogeneous

- Single Processing
- Self-Adaptive system for single system (homogeneous)

Multiple Robots / Heterogeneous

- Collaboration & Cooperation Model
- Negotiation Model
- Self-Adaptive system for heterogeneous systems/robots

Our Focus: Distributed

> Distributed Decision

Our Focus: Semantic KB

Ontological KB

- Expression power → sophisticated reasoning
- Reuse of knowledge → means of communication in SoS
- Interoperability support → overcome heterogeneity

Simple Knowledge Based (Syntactic) Centralized KB/Info. Full KB Sensors Autonomic Manager Fffectors Managed Element Effectors Managed Element

Ontological Knowledge Based (Semantic)

- Distributed KB/Info.
 (Decentralized Approaches for Self-Adaptation in Agent Organizations, TAAS, 2012)
- Partial KB

Our Focus: System of Systems

- ➤ Adaptive System of Systems (SoS)
 - ➤ Using Collective Intelligence
 - ➤ Model for Interoperability, Communication, Cooperation, Collaboration

Adaptive **System**

Approach to Single robot / one adaptive system

Adaptive **System of Systems**

Approach to dynamic adaptive product line

Our Focus: Adaptization

> Adaptization

➤ Transform existing non-adaptable software to adaptable software by providing methodology and tools

Ad-hoc Design

 Ad-hoc model and design for system / robot

Proposed Work

12

Platform

Adaptive Software Systems (EASSY)

❖ A research on situation-aware based self-adaptive software system modeling and monitoring

Adaptation Variatio

:Adaptation Degree = 4

Variation: GPS, Weather

Reverse Engineering

- Integrated automation tool for detecting Self-Adaptive Monitoring Factor
- Adaptation Degree Evaluation
 - Extended situation-aware and system modeling language.
 - Developing a quantitative and reasonable evaluation method of non-adaptable software or converted self-adaptive software as adaptation level
- Adaptation Variation Detection
 - To define self-adaptive services and match it with self-adaptive monitoring factor in current self-adaptation level of the non-adaptable software

Thank You For Your Attention!

Hoh Peter In hohin97@gmail.com
http://embedded.korea.ac.kr

