ADAPTIVE SECURITY

A Requirements-Driven Approach

Mazeiar Salehie EASSY, Japan September 2013

Adaptive Security

Saturn model

Adaptive security: Our Focus

- Protecting valuable assets as the main goal of security
 - Changes in assets should be monitored
 - Security goals should be adequately satisfied all the time with considering other goals
- Proactive adaptive security
 - Asset variability, threat variation, risk fluctuation, changing context without harms to assets

Adaptive Security Framework

- Requirements at runtime
- Causal reasoning for
 - Analyzing

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Planning (Decision making)

Trio: Asset Model

Trio: Goal Model

Trio: Threat Model

Security Fuzzy Causal Network (SFNet)

SFNet for Mobile Security (partial model)

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Building SFNet

- Transforming Trio to SFNet
 - e.g., Asset containment and association to positive causality
- SFNet structure validation
 - e.g., Holding properties for primary assets, security controls and partial risks

Aggregation Functions

Causal Link	Aggregation
$\{as\} ightarrow as$	TCoNorm
$\{as\} ightarrow th$	TCoNorm
$\{th\} ightarrow at$	TCoNorm
$\{v\} ightarrow at$	TCoNorm
$\{th\}, \{v\} ightarrow at$	TNorm
$\{as\} ightarrow sgp$	TCoNorm
$\{sg\} ightarrow sgp$	No aggregation (only one goal)
$\{as\} \{sg\} ightarrow sgp$	TNorm
$\{sc\} ightarrow sg$	TCoNorm
$\{sg\} ightarrow sg$	TConorm
$\{sc\} ightarrow v$	TNorm
$\{sc\} ightarrow nsg$	Average
$\{as\} ightarrow pr$	TCoNorm
at ightarrow pr	No aggregation (only one attack)
$\{as\}, at o pr$	TNorm
$\{pr\} o R$	TCoNorm
$R, \{sg\}, \{nsg\} \to U$	Average

Aggregation	Function	
	Minimum	op(a,b)=min(a,b)
(T) 1	Product	op(a,b)=a.b
TNorm	Lukasiewicz	$\top(a,b) = max(0,a+b-1)$
	Maximum	$\bot(a,b) = max(a,b)$
ma M	BoundedSum	$\perp(a,b) = min(a+b,1)$
TCoNorm	ProbabilisticSum	$\bot(a,b) = a + b - a.b$
Average	Average	Average(a, b) = a + b/2

Building SFNet

Validity of the trio model

Fuzzy Causal Reasoning

- Propagate changes in source nodes (e.g., assets) through causal links and aggregation functions
- Search for a security configuration
 - For each specific utility solve a satisfaction problem (Using Z3 SMT solver)
 - Perform a binary search between utility [0,1] with a precision

Mobile Phone Security: Asset variability

- Utility variation for different asset values
- Priorities: Security=1, Performance=0.75, Usability=0.75

- Security variation for different asset values
- Priorities: Security=1, Performance=0.75, Usability=0.75

Deployment Architecture

Adaptive Access Control

- Asset-based physical access control
- Cyber and physical assets may move in/out areas
- People may move in/out areas
- Authentication, authorization, logging and surveillance mechanisms as security controls
- Adaptive security can be realized as single or two different controllers

Exp: Asset variability in access control

- Utility variation for different asset values
- Priorities: Security=1, Performance=0.75, Usability=0.75

- Security variation for different asset values
- Priorities: Security=1, Performance=0.75, Usability=0.75

Adaptive Emergency Response Service

- Protecting valuable assets in an area after occurring an incident with possible security impacts
- Dynamically generating SFNet from a template model

Summary & Next Steps

- Focusing on assets to achieve the ultimate goal of security: "Protecting valuable assets"
- Linking assets, goals and threats in the trio model
 - Can be useful for other security analyses as well
- Turning the configuration search to solving several satisfaction problems
- Validating the trio model
- Automated weight & aggregation function tuning
- Generating SFNet from a template
- Alternative search algorithms