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}  Online shopping service	

}  Adopted from [Chen et al., 2014] and [Qian et al., 
2014] and modified	

}  Scenario before evolution	
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}  Scenario before evolution (cont’d)	
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}  Scenario after the first evolution (added parts)	

5	



}  Scenario after the first evolution (added parts, 
cont’d)	
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}  Scenario after the second evolution (added parts)	



}  Abstraction in model checking	
◦  Provide an equivalence relation of states	

◦  Make the quotient set as the new state	

   space	
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}  Maude	
◦  Algebraic specification language	

◦  Behavior specifications represented by equations and 
rewrite rules between terms	
�  A term represents a system state	

�  A set of equations and rewrite rules with declarations is called a 
rewrite theory	

◦  Behaviors are represented by rewriting relations between 
terms inferred from the rewrite theory	
�  For a rewrite theory R and terms t and t’, we write R |= t => t’	
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}  Maude (cont’d)	
◦  Useful to write behavior specifications of distributed object-

based systems	

◦  Support of reflection	

◦  Effective theoretical basis of abstraction called equational 
abstraction	

�  Just adding equations to the rewrite theory	

�  The newly added equations define the equivalence relation	

◦  Model checkers	
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}  Rewrite rule representing the process of registering a 
user	

 rl : register(I) < A : Authenticator | none >	

    => < A : Authenticator | none > registered(I) .	

◦  The authenticator receives the registration request of the 
user whose ID is “I” (variable for natural numbers) and 
informs the completion of the registration	

Object 
(authenticator)	

Message	

Term	



}  Modeling reflection	
◦  Terms that are metalevel representations of the object-level 

constructs such as terms, rewrite rules, and rewrite theories	

◦  E.g. The metalevel term for f(x, a)	

	f(x, a) = 'f ['x, 'a] = _[_,_]('f, 'x, 'a)	

	(Each underscore ‘_’ is replaced by the corresponding	

	argument)	
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f (x, a) => f (x, b)	

=>('f ['x, 'a],	
'f ['x, 'b])	

Metalevel	

Object-level	



}  Modeling reflection	
◦  A specific rewrite theory U and an operator @	

	R |= t => t’ if and only if U |= t @ R => t’@ R	

indicating in the metalevel U simulates the object-level 
behaviors	
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f (x, a) => f (x, b)	

=>('f ['x, 'a],	
'f ['x, 'b])	

Metalevel	

Object-level	
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}  Equational abstraction	
◦  Just adding equations to the rewrite theory	

◦  The newly added equations define the equivalence relation	
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}  Assumptions	
◦  Existence of the goal model, the sequence diagram, and the 

program that is currently operating	

◦  Traceability from the goal model to the sequence diagram	

�  Represented by correspondence between the functional 
requirements (leaf goals) and the parts of the sequence diagram	
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}  Example	
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}  Example (cont’d)	
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}  Outline	
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1.  Identify the difference between the goal models 
before and after evolution	
�  Express explicitly temporal orders of goal satisfaction as the 

“prior-to” relationship	
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}  Goal model after the second evolution	
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Added parts	

Prior-to relation	



1.  Identify the difference between the goal models 
before and after evolution	
◦  Express explicitly satisfaction orders between goals as the 

“prior-to” relationship	

2.  Create sequence diagram of the program after 
evolution, or sequence diagram fragments for each 
newly added functional requirements	
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}  Example: Scenario after the second evolution (added 
parts)	



3.  After the Maude specification is automatically 
created, the engineer modifies the specification 
manually if needed	

4.  Model check the created specification	

5.  If model checking succeeds, create the new 
program from the sequence diagram and carry out 
evolution in practice, and if not, modify the goal 
model or the sequence diagram and return to 3	
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}  Creating Maude specification	
◦  Create the Maude specifications from the sequence 

diagrams before and after evolution respectively	

	

 rl : register(I) < A : Authenticator | none >	

    => < A : Authenticator | none > registered(I) .	
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}  Creating Maude specification	
◦  Create the Maude specifications from the sequence 

diagrams before and after evolution respectively	

◦  Create the metalevel Maude specification that deals with the 
specifications created above as metalevel data and carries 
out the change	
�  The rewrite rule to carry out the change:	

	rl T @ r => T @ r’	

	where	
�  T is a variable representing a term	

�  r and r’ are rewrite theories representing the specifications before 
and after the change	
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}  Abstraction	
◦  Conduct equational abstraction on the object-level 

behaviors of both before and after evolution	

◦  Metalevel behaviors simulating the object-level are also 
abstracted	

�  R |= t = t’ if and only if U |= t @ R = t’@ R	

�  If a set of equations E is added to R (written as R ∪E ), E also 
defines an equivalence relation for the terms t @ R ∪E	

◦  Action of changing object-level specifications remains	
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}  Validation of Abstraction	
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}  Abstraction applied to our example	
◦  Model checking focuses on only one user	

◦  Behaviors of all of the other users are abstracted way	

◦  Specific expressions in the Maude specification carry out 
this abstraction	
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}  Rationale of this abstraction	
◦  The behaviors involved with the abstracted users do not 

affect the behaviors involved with the remaining user	

◦  The former behaviors are abstracted to the self-loop 
transition	

◦  Instead, the fairness assumptions are required	
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}  First evolution: addition of the authentication functionality	
◦  Verified property: anytime the users can access the shop and the 

shop properly deals with the users’ orders	

�  Under the assumption that the system treats all the users fairly	

◦  Verification time without abstraction (in milliseconds)	

◦  With abstraction: in all cases, verification take the same time as 
the case of one user	
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No. of users	   Before evolution	   During evolution	  
1	   80	   120	  
2	   200	   1084	  
3	   2432	   42956	  



}  Second evolution: addition of the two-factor 
authentication functionality	
◦  Verified property: the same	

◦  Verification time without abstraction (in milliseconds)	

◦  With abstraction: in all cases, verification take the same time 
as the case of one user	
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No. of users	   Before evolution	   During evolution	  
1	   644	 696	

2	   1948	 3124	

3	   43772	 117252	



}  Applicability of abstraction	
◦  The main reason of the success of abstraction: The 

behaviors involved with the abstracted users do not affect 
the behaviors involved with the remaining user	
◦  This situation does not hold in general	
�  E.g. If the quantity of products is considered, a user’s purchase 

may make the stock empty and other users cannot buy anymore	

}  Properties to be verified	
◦  Our example: only liveness properties	
◦  We must examine what properties need to be verified for 

dynamic evolution	
�  E.g. [Zhang et al., 2009] proposed A-LTL (an adapt-operator 

extension to LTL)	
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}  Counterexample analysis	
◦  Currently the engineers need to analyze the Maude 

expressions	

◦  Supports such as the use the sequence diagrams are 
desired	
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}  Many formal models and verification approaches for 
dynamic evolution	

}  [Zhang et al., 2009]: The assume-guarantee style 
modular model checking	

}  [Filieri and Tamburrelli, 2013]: Efficient probabilistic 
model checking	

}  [Ghezzi and Sharifloo, 2013]: hybrid approach 
including both design-time and runtime verification	

34	



}  [Ghezzi et al., 2013]: Use of probabilistic model 
checking to adapt the system behaviors optimizing 
non-functional features	

}  [Bartels and Kleine, 2011]: Use of process algebra 
CSP for model checking of self-adaptive systems	

}  [Bruni et al., 2013]: Use of Maude for probabilistic 
model checking of MAPE-K loop	

}  [Tajalli et al., 2010]: Use of formal models of ADLs to 
produce correct configurations after evolution	

}  There are no studies of formal verification of dynamic 
evolution using reflection with abstraction	
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}  Solutions to the limitations	
}  Use of other verification techniques	
◦  Modular model checking	
◦  Probabilistic model checking	

}  Use of other dynamic evolution approaches	
◦  Architecture-based	
◦  Models @ run time	
◦  RE @ run time	
◦  DSPL	
◦  Aspects	

◦  Contexts	
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