
Yasuyuki Tahara, Shinichi Honiden	

1	

}  Details of Motivating Example	

}  Backgrounds	

}  Details of Proposed Method	

}  Discussions	

}  Related Work	

}  Future work	

2	

}  Online shopping service	

}  Adopted from [Chen et al., 2014] and [Qian et al.,
2014] and modified	

}  Scenario before evolution	

3	

}  Scenario before evolution (cont’d)	

4	

}  Scenario after the first evolution (added parts)	

5	

}  Scenario after the first evolution (added parts,
cont’d)	

6	

}  Scenario after the second evolution (added parts)	

}  Abstraction in model checking	
◦  Provide an equivalence relation of states	

◦  Make the quotient set as the new state	

 space	

8	

Original state space	

Quotient set	

New state space	

}  Maude	
◦  Algebraic specification language	

◦  Behavior specifications represented by equations and
rewrite rules between terms	
�  A term represents a system state	

�  A set of equations and rewrite rules with declarations is called a
rewrite theory	

◦  Behaviors are represented by rewriting relations between
terms inferred from the rewrite theory	
�  For a rewrite theory R and terms t and t’, we write R |= t => t’	

9	

}  Maude (cont’d)	
◦  Useful to write behavior specifications of distributed object-

based systems	

◦  Support of reflection	

◦  Effective theoretical basis of abstraction called equational
abstraction	

�  Just adding equations to the rewrite theory	

�  The newly added equations define the equivalence relation	

◦  Model checkers	

10	

}  Rewrite rule representing the process of registering a
user	

 rl : register(I) < A : Authenticator | none >	

 => < A : Authenticator | none > registered(I) .	

◦  The authenticator receives the registration request of the
user whose ID is “I” (variable for natural numbers) and
informs the completion of the registration	

Object
(authenticator)	

Message	

Term	

}  Modeling reflection	
◦  Terms that are metalevel representations of the object-level

constructs such as terms, rewrite rules, and rewrite theories	

◦  E.g. The metalevel term for f(x, a)	

	f(x, a) = 'f ['x, 'a] = _[_,_]('f, 'x, 'a)	

	(Each underscore ‘_’ is replaced by the corresponding	

	argument)	

12	

f (x, a) => f (x, b)	

=>('f ['x, 'a],	
'f ['x, 'b])	

Metalevel	

Object-level	

}  Modeling reflection	
◦  A specific rewrite theory U and an operator @	

	R |= t => t’ if and only if U |= t @ R => t’@ R	

indicating in the metalevel U simulates the object-level
behaviors	

13	

f (x, a) => f (x, b)	

=>('f ['x, 'a],	
'f ['x, 'b])	

Metalevel	

Object-level	

U	

@	

}  Equational abstraction	
◦  Just adding equations to the rewrite theory	

◦  The newly added equations define the equivalence relation	

14	

}  Assumptions	
◦  Existence of the goal model, the sequence diagram, and the

program that is currently operating	

◦  Traceability from the goal model to the sequence diagram	

�  Represented by correspondence between the functional
requirements (leaf goals) and the parts of the sequence diagram	

15	

}  Example	

16	

1	

2	
1	

2	

}  Example (cont’d)	

17	

3	4	

3	

4	

}  Outline	

18	

Maude specification	
Properties to be

verified	

Automated tools	

Maude
specification

generator	

Maude model
checker	

Source code
generator	Source code skeleton

of program carrying
out evolution	

Goal models and sequence diagrams	

Before evolution	

After evolution	

Create	

if true	

•  Conduct
abstraction	

•  Add properties	

1.  Identify the difference between the goal models
before and after evolution	
�  Express explicitly temporal orders of goal satisfaction as the

“prior-to” relationship	

19	

}  Goal model after the second evolution	

20	

Added parts	

Prior-to relation	

1.  Identify the difference between the goal models
before and after evolution	
◦  Express explicitly satisfaction orders between goals as the

“prior-to” relationship	

2.  Create sequence diagram of the program after
evolution, or sequence diagram fragments for each
newly added functional requirements	

21	

}  Example: Scenario after the second evolution (added
parts)	

3.  After the Maude specification is automatically
created, the engineer modifies the specification
manually if needed	

4.  Model check the created specification	

5.  If model checking succeeds, create the new
program from the sequence diagram and carry out
evolution in practice, and if not, modify the goal
model or the sequence diagram and return to 3	

23	

}  Creating Maude specification	
◦  Create the Maude specifications from the sequence

diagrams before and after evolution respectively	

	

 rl : register(I) < A : Authenticator | none >	

 => < A : Authenticator | none > registered(I) .	

24	

}  Creating Maude specification	
◦  Create the Maude specifications from the sequence

diagrams before and after evolution respectively	

◦  Create the metalevel Maude specification that deals with the
specifications created above as metalevel data and carries
out the change	
�  The rewrite rule to carry out the change:	

	rl T @ r => T @ r’	

	where	
�  T is a variable representing a term	

�  r and r’ are rewrite theories representing the specifications before
and after the change	

25	

}  Abstraction	
◦  Conduct equational abstraction on the object-level

behaviors of both before and after evolution	

◦  Metalevel behaviors simulating the object-level are also
abstracted	

�  R |= t = t’ if and only if U |= t @ R = t’@ R	

�  If a set of equations E is added to R (written as R ∪E), E also
defines an equivalence relation for the terms t @ R ∪E	

◦  Action of changing object-level specifications remains	

26	

}  Validation of Abstraction	

27	

Change
specifications

Abstraction

Change
specifications

Simulate

Object-level

Simulate

Metalevel

}  Abstraction applied to our example	
◦  Model checking focuses on only one user	

◦  Behaviors of all of the other users are abstracted way	

◦  Specific expressions in the Maude specification carry out
this abstraction	

28	

Users	 Users	

}  Rationale of this abstraction	
◦  The behaviors involved with the abstracted users do not

affect the behaviors involved with the remaining user	

◦  The former behaviors are abstracted to the self-loop
transition	

◦  Instead, the fairness assumptions are required	

29	

Users	 Users	

}  First evolution: addition of the authentication functionality	
◦  Verified property: anytime the users can access the shop and the

shop properly deals with the users’ orders	

�  Under the assumption that the system treats all the users fairly	

◦  Verification time without abstraction (in milliseconds)	

◦  With abstraction: in all cases, verification take the same time as
the case of one user	

30	

No. of users	 Before evolution	 During evolution	
1	 80	 120	
2	 200	 1084	
3	 2432	 42956	

}  Second evolution: addition of the two-factor
authentication functionality	
◦  Verified property: the same	

◦  Verification time without abstraction (in milliseconds)	

◦  With abstraction: in all cases, verification take the same time
as the case of one user	

31	

No. of users	 Before evolution	 During evolution	
1	 644	 696	

2	 1948	 3124	

3	 43772	 117252	

}  Applicability of abstraction	
◦  The main reason of the success of abstraction: The

behaviors involved with the abstracted users do not affect
the behaviors involved with the remaining user	
◦  This situation does not hold in general	
�  E.g. If the quantity of products is considered, a user’s purchase

may make the stock empty and other users cannot buy anymore	

}  Properties to be verified	
◦  Our example: only liveness properties	
◦  We must examine what properties need to be verified for

dynamic evolution	
�  E.g. [Zhang et al., 2009] proposed A-LTL (an adapt-operator

extension to LTL)	

32	

}  Counterexample analysis	
◦  Currently the engineers need to analyze the Maude

expressions	

◦  Supports such as the use the sequence diagrams are
desired	

33	

}  Many formal models and verification approaches for
dynamic evolution	

}  [Zhang et al., 2009]: The assume-guarantee style
modular model checking	

}  [Filieri and Tamburrelli, 2013]: Efficient probabilistic
model checking	

}  [Ghezzi and Sharifloo, 2013]: hybrid approach
including both design-time and runtime verification	

34	

}  [Ghezzi et al., 2013]: Use of probabilistic model
checking to adapt the system behaviors optimizing
non-functional features	

}  [Bartels and Kleine, 2011]: Use of process algebra
CSP for model checking of self-adaptive systems	

}  [Bruni et al., 2013]: Use of Maude for probabilistic
model checking of MAPE-K loop	

}  [Tajalli et al., 2010]: Use of formal models of ADLs to
produce correct configurations after evolution	

}  There are no studies of formal verification of dynamic
evolution using reflection with abstraction	

35	

}  Solutions to the limitations	
}  Use of other verification techniques	
◦  Modular model checking	
◦  Probabilistic model checking	

}  Use of other dynamic evolution approaches	
◦  Architecture-based	
◦  Models @ run time	
◦  RE @ run time	
◦  DSPL	
◦  Aspects	

◦  Contexts	

36	

