Guaranteeing Solution Quality for SAS Optimization Problems by being Greedy

Ulrike Stege University of Victoria <u>ustege@uvic.ca</u>

Preliminary results of this in: S. Balasubramanian, R.J. Desmarais, H.A. Müller, U. Stege, S. Venkatesh. *Characterizing problems for realizing policies in self-adaptive and self-managing systems*. SEAMS 2011: 70-79

Optimization problems

- Given Constraints, objective function
- Goal Whatever optimizes the objective function

Outline

- SAS optimization problem: SCHEDULING
- Algorithms & policies
- Definition and properties of **maximization** problems
- The greedy algorithm
- When is the greedy algorithm a good choice?
- Solution quality: Adding structure to maximization problems
- Conclusions & future works
- Group work

A SAS optimization problem **DATA CENTER SCHEDULING**

A SAS optimization problem DATA CENTER SCHEDULING

A SAS optimization problem **CLOUD SCHEDULING Scheduler** Server Jobs **SAS Optimization Problem** 5

University

SCHEDULING

Input Jobs $j_1, ..., j_n$; for each j_i the following constraints

- arrival time a_i
- deadline d_i
- processing time t_i
- revenue r_i

Output A linear schedule of jobs that maximizes their revenue, that is the sum of the revenues of all scheduled jobs

Wishlist of algorithmic properties for solving SCHEDULING

Fast

 Optimal or good (the solution is feasible and satisfies a quality guarantee)

What would be really greedy?

- Sort the jobs in decreasing order according to their revenue
 - Take (and remove) first job from sorted list
 - add to schedule if feasible
 - repeat

How good is greedy for SCHEDULING?						
1	0 20	30 Z	40 5	50		
<i>a</i> 5: 1 <i>d</i> 5: 53 <i>r</i> 5: 10	<i>a</i> ₂ : 3 <i>d</i> ₂ : 31 <i>r</i> ₂ : 8	a7: 9 d7: 48 r7: 7	a4: 5 d4: 55 r4: 6			

How good is greedy for SCHEDULING?						
1	0 20	30 Z	40 5 	50		
a5: 1 d5: 53 r5: 10	a ₂ : 3 d ₂ : 31 r ₂ : 8	a7: 9 d7: 48 r7: 7	a4: 5 d4: 55 r4: 6			

<i>a</i> ₃ : 4	
<i>d</i> ₃ : 27	
<i>r</i> ₃ : 5	

	How goo Sch	d is gree	dy for	-
1	0 20	30 Z	10 5	50
<i>a</i> 5: 1 <i>d</i> 5: 53 <i>r</i> 5: 10	<i>a</i> ₂ : 3 <i>d</i> ₂ : 31 <i>r</i> ₂ : 8	<i>a</i> ₇ : 9 <i>d</i> ₇ : 48 <i>r</i> ₇ : 7	a4: 5 d4: 55 r4: 6	

<i>a</i> ₃ : 4	<i>a</i> ₁ : 2
<i>d</i> ₃ : 27	$d_1: 25$
<i>r</i> ₃ : 5	$r_1: 4$

Solution quality

What now?

- Possible approach: Come up with **better algorithm**
- Instead: tweak the problem
 - Add **problem structure** while keeping greedy algorithm

Components of an optimization problem

GENERIC MAXIMIZATION PROBLEM

Given Set system (U, \mathcal{F}) : U is a finite set, $\mathcal{F} \subseteq 2^U$ satisfies a given **constraint set**; **objective function** $g: 2^U \rightarrow IR^+$: monotone, nondecreasing

Output $S \in \mathcal{F}$ for which g has maximum value

SCHEDULING input as set system

- D: latest deadline in job list
- Set system (U, \mathcal{F}):
 - $U = \{1, 2, ..., n\} \times \{1, 2, ..., D\}$ with
 - $(i, j) \in U$: job *i* that starts at time *j*
 - \mathcal{F} : set of all feasible schedules where for each $(i, j) \in S \subseteq \mathcal{F}, a_i \leq j \leq d_i \cdot t_i$

SCHEDULING objective function

Let $S \in \mathcal{F}$ be a feasible schedule. Then $g(S) = \sum_{(i,j) \in S} r_i \, .$

Wanted: a way to figure out how good the greedy algorithm is for our maximization problem

Maximization problems

Then: two mathematical frameworks

- Constraint-based framework
- Objective function based framework

Some definitions ...

19

- Objective functions
 - linear
 - submodular
- Constraint set
 - matroid
 - *k*-extendible

• is **linear** if for any $A \subseteq U$: $f(A) = \sum_{s \in A} w(s)$ for some

given weight function $w: U \rightarrow IR^+$

• is **linear** if for any $A \subseteq U$: $f(A) = \sum_{s \in A} w(s)$ for some

given weight function $w: U \rightarrow IR^+$

• is **submodular** if $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ for all $A, B \subseteq U$

• is **linear** if for any $A \subseteq U$: $f(A) = \sum_{s \in A} w(s)$ for some

given weight function $w: U \rightarrow IR^+$

• is **submodular** if $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ for all $A, B \subseteq U$

Note: Not every submodular function is linear but every linear function is submodular.

A set system (U, \mathcal{F}) ...

- is called a **matroid** if it satisfies the following conditions
 - \mathcal{F} is **downward closed**: if $A \subseteq B$ and $B \in \mathcal{F}$ then $A \in \mathcal{F}$
 - \mathcal{F} satisfies the **augmentation** property: for all $A, B \in \mathcal{F}$ with |B| > |A| there exists $x \in B$ -A s.t. $A \cup \{x\} \in \mathcal{F}$

A set system $(U, \mathcal{F}) \dots$

- is called a *k*-extendible if it satisfies the following conditions
 - $\ensuremath{\mathcal{T}}$ is downward closed
 - \mathcal{F} satisfies the **exchange** property: Let $A, B \in \mathcal{F}$ with $A \subseteq B$ and let $x \in U$ -B s.t. $A \cup \{x\} \in \mathcal{F}$. Then there exists $Y \subseteq B$ -A, $|Y| \leq k$, s.t. (B-Y) $\cup \{x\} \in \mathcal{F}$.

• Its objective function is linear and therefore submodular

- Its objective function is linear and therefore submodular
- Its set system is downward closed

- Its objective function is linear and therefore submodular
- Its set system is downward closed
- but does not satisfy the augmentation property (and therefore is not a matroid)

- Its objective function is linear and therefore submodular
- Its set system is downward closed
- but does not satisfy the augmentation property (and therefore is not a matroid)
- Exchange property? Yes: it's a k-extendible system

SCHEDULING downward closed

- \mathcal{F} : set of all feasible schedules
- To show: if $A \subseteq B$ and $B \in \mathcal{F}$ then $A \in \mathcal{F}$
- That is we need to show: a subset of a feasible schedule is also feasible itself

SCHEDULING augmentation property

- to show: for all $A, B \in \mathcal{F}$ with |B| > |A| there exists $x \in B A$ s.t. $A \cup \{x\} \in \mathcal{F}$
- that is: given any two feasible schedules where one (B) contains more jobs than the other (A), there must be a job that is in B and not in A that can be added to A while maintaining feasibility

But:

But:

<i>a</i> ₅ : 1	<i>a</i> ₃ : 4	$a_1: 2$	<i>a</i> ₇ : 9	<i>a</i> ₄ : 5	
<i>d</i> ₅ : 53	<i>d</i> ₃ : 27	d_1 : 25	<i>d</i> ₇ : 48	<i>d</i> ₄ : 55	
<i>r</i> 5: 10	<i>r</i> ₃ : 5	<i>r</i> ₁ : 4	<i>r</i> ₇ : 7	<i>r</i> 4: 6	

B

But:

$a_5: 1$	<i>a</i> ₃ : 4	a_1 : 2	<i>a</i> ₇ : 9	a4: 5	В
$d_5: 53$	<i>d</i> ₃ : 27	d_1 : 25	<i>d</i> ₇ : 48	d4: 55	
$r_5: 10$	<i>r</i> ₃ : 5	r_1 : 4	<i>r</i> ₇ : 7	r4: 6	
75.10	13.5	/]. 4	//./	/4.0	

26

Maximization problems

University of Victoria

SCHEDULING: exchange property

- to show: Let $A, B \in \mathcal{F}$ with $A \subseteq B$ and let $x \in U$ -B s.t. $A \cup \{x\} \in \mathcal{F}$. Then there exists $Y \subseteq B$ -A, $|Y| \leq k$, s.t. $(B-Y) \cup \{x\} \in \mathcal{F}$
- in other words: Let A, B be feasible schedules with
 A ⊆ B. Let x be a job that is not in B that can augment A to a feasible schedule.
 - Then there must exist up to k jobs that are in B and not in A such that, once removed from B, B can be expanded to a feasible schedule by job x

Maximization problems

• Objective function is linear and submodular

- Objective function is linear and submodular
- Set system is downward closed, does not satisfy augmentation property (and therefore is not a matroid), but satisfies exchange property and therefore is a *k*-extendible system

[Here: *k* is computed by the longest job processing time decided by the shortest (which can be considered the time unit)]

What's so amazing about these properties?

30

• quality guarantees for greedy algorithm

 $S \leftarrow \emptyset; A \leftarrow \emptyset$

repeat

$$A \leftarrow \{e \in U \mid S \cup \{e\} \in \mathcal{F}\}$$

if $A \neq \emptyset$ then

$$u \leftarrow \operatorname{argmax}_{x \in A} g(S \cup \{x\})$$
$$S \leftarrow S \cup \{u\}$$
until $A = \emptyset$

generic greedy algorithm

Quality guarantees

Theorem 1. If set system (U, \mathcal{F}) is a matroid and objective function g is linear, then the greedy algorithm returns the optimal solution.

Theorem 2. If set system (U, \mathcal{F}) is a matroid and objective function g is submodular then the greedy algorithm is an 1/2-approximation.

Theorem 3. If set system (U, \mathcal{F}) is a *k*-extendible system and objective function *g* is linear then the greedy algorithm is an 1/k-approximation.

Theorem 4. If set system (U, \mathcal{F}) is a *k*-extendible system and objective function *g* is submodular then the greedy algorithm is an 1/(k+1)-approximation.

[Fisher et al, 1978]

Definition: Approximation Algorithm

- P: maximization problem to be solved
- A: an algorithm for P
- *x*: an arbitrary instance for *P*
- A(x): output of A for input x
- OPT(*x*): optimal solution for input *x*
- A is a ρ -approximation algorithm for P if

$$\frac{g(A(x))}{g(OPT(x))} \le \rho$$

Overview of results for greedy technique

	linear function	submodular function	unrestricted
matroid	optimal	1/2- approximation	no guarantees
<i>k</i> -extendible system	1/k- approximation	1/(k+1)-approximation	no guarantees
unrestricted	no guarantees	no guarantees	no guarantees
	-	33 When is greed	ly a good choice?

University of Victoria

Constraint-based framework

- Objective function: linear
- Add structure to constraint set to satisfy matroid or k-extendibility property

Objective function based framework

- Constraint set: matroid
- Add structure to objective function to make it linear or submodular

Back to SCHEDULING

- Properties
 - Linear function
 - *k*-extendible system
- Greedy is a 1/k-approximation
- Can we tweak the constraints to make it a matroid?
 - yes, if processing times of all jobs are equal then augmentation property is satisfied

Recipe

- 1. Formulate maximization problem as set system and describe objective function, according to the GENERIC MAXIMIZATION PROBLEM
- 2. Investigate the following:
 - 1. Is the set system a matroid?
 - 2. If not: Is the set system a *k*-extendible system?
 - 3. Is the objective function linear?
 - 4. If not: is it submodular?
- 3. If no optimal solution: Can you tweak the problem? Give more structure to constraints or objective function?

Conclusions: two frameworks for adding structure to maximization problems for using greedy technique

	linear function	submodular function	unrestricted	
matroid	optimal	1/2- approximation	no guarantees	
<i>k</i> -extendible system	1/k- approximation	1/(k+1)-approximation	no guarantees	
unrestricted	no guarantees	no guarantees	no guarantees	

38

Future Works

- Study other tractable algorithm techniques
 - *P*-time techniques
 - other exact algorithmic techniques
 - When can they be efficiently deployed?

Acknowledgements

Sowmya Balasubramanian, Ron Desmarais, Steven Lonergan, Hausi Müller, Venkatesh Srinivasan

Thank you!

Group Work

- Pick an optimization problem that you are working on (Kostas' Meeting Scheduler or one of John's problems) and describe it to the group
- Formalize it: Input (including constraint set and objective function) and Goal/Output must be well defined
- Consider your constraints: are they all needed? Could there be more? What properties do your inputs (for your application) have?

