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Optimization problems

• Given Constraints, objective function 

• Goal Whatever optimizes the objective function
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Outline
• SAS optimization problem: SCHEDULING  

• Algorithms & policies 

• Definition and properties of maximization problems 

• The greedy algorithm 

• When is the greedy algorithm a good choice? 

• Solution quality: Adding structure to maximization problems 

• Conclusions & future works 

• Group work
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A SAS optimization problem
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SAS Optimization Problem

SCHEDULING

Input Jobs j1, …, jn; for each ji the following 
constraints 
• arrival time ai 
• deadline di 
• processing time ti  
• revenue ri 
Output A linear schedule of jobs that maximizes their 
revenue, that is the sum of the revenues of all 
scheduled jobs  
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SAS Optimization Problem

Wishlist of algorithmic properties 
for solving SCHEDULING 

• Fast 

• Optimal or good (the solution is feasible and 
satisfies a quality guarantee)
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SAS Optimization Problem

What would be really 
greedy?

• Sort the jobs in decreasing order according to their 
revenue 

• Take (and remove) first job from sorted list 

• add to schedule if feasible 

• repeat
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SAS Optimization Problem

How good is greedy for 
SCHEDULING?
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Algorithms & Policies

Solution quality
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A solution
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Optimal solution
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        Utility Function

Policy

Policy

Policy

[Kephart, Walsh, POLICY 2004]



Algorithms & Policies

What now?

• Possible approach: Come up with better algorithm  

• Instead: tweak the problem  

• Add problem structure while keeping greedy 
algorithm
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Maximization problems

Components of an 
optimization problem
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constraints

objective 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Maximization problems 

GENERIC MAXIMIZATION 
PROBLEM

Given Set system (U, F): U is a finite set,  
F⊆2U satisfies a given constraint set;  
objective function g: 2U → IR+: monotone, non-
decreasing

Output S∈F for which g has maximum value
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Maximization problems 

SCHEDULING  
input as set system

• D: latest deadline in job list 

• Set system (U, F): 

• U = {1, 2, …, n}x{1, 2, …, D} with 

• (i, j) ∈ U: job i that starts at time j 

• F: set of all feasible schedules where for each  
(i, j) ∈ S⊆F, ai ≤ j ≤ di-ti

15



Maximization problems 

SCHEDULING  
objective function

Let S ∈ F be a feasible schedule. Then  
                          .
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g(S) =
X

(i,j)2S

ri



Maximization problems 

Before we can tweak the 
problem ….
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Wanted: a way to figure out how good the  
greedy algorithm is for our maximization problem



Maximization problems 

Then: two  
mathematical frameworks

• Constraint-based framework 

• Objective function based framework

18



Maximization problems 

Some definitions …
• Objective functions

• linear 

• submodular 

• Constraint set

• matroid 

• k-extendible
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Maximization problems 

Given set U, function  
f: 2U→ IR+ 

…  
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Maximization problems 

Given set U, function  
f: 2U→ IR+ 

…  
• is linear if for any A⊆U: f(A) =                for some  
 
given weight function  w: U→ IR+

• is submodular if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for 
all A, B ⊆ U

Note: Not every submodular function is linear but 
every linear function is submodular.  
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Maximization problems 

A set system (U, F) …
• is called a matroid if it satisfies the following 

conditions 

• F is downward closed: if A ⊆ B and B ∈ F then  
A ∈ F 

• F satisfies the augmentation property: for all  
A, B ∈ F with |B| > |A| there exists x ∈ B-A s.t.  
A ∪ {x} ∈ F
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Maximization problems 

A set system (U, F) …
• is called a k-extendible if it satisfies the following 

conditions 

• F is downward closed

• F satisfies the exchange property: Let A, B ∈ F 
with A ⊆ B and let x ∈ U-B s.t. A ∪ {x} ∈ F. Then 
there exists Y  ⊆ B-A, |Y| ≤ k, s.t. (B-Y) ∪ {x} ∈ F.
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Maximization problems 

Properties of SCHEDULING  
Summary

23



Maximization problems 

Properties of SCHEDULING  
Summary

• Its objective function is linear and therefore 
submodular

23



Maximization problems 

Properties of SCHEDULING  
Summary

• Its objective function is linear and therefore 
submodular

• Its set system is downward closed 

23



Maximization problems 

Properties of SCHEDULING  
Summary

• Its objective function is linear and therefore 
submodular

• Its set system is downward closed 

• but does not satisfy the augmentation property 
(and therefore is not a matroid)

23



Maximization problems 

Properties of SCHEDULING  
Summary

• Its objective function is linear and therefore 
submodular

• Its set system is downward closed 

• but does not satisfy the augmentation property 
(and therefore is not a matroid)

• Exchange property? Yes: it’s a k-extendible system
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Maximization problems 

SCHEDULING  
downward closed

• F: set of all feasible schedules  

• To show: if A ⊆ B and B ∈ F then A ∈ F

• That is we need to show: a subset of a feasible 
schedule is also feasible itself 
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Maximization problems 

SCHEDULING 
augmentation property

• to show: for all A, B ∈ F with |B| > |A| there exists  
x ∈ B-A s.t. A ∪ {x} ∈ F

• that is: given any two feasible schedules where  
one (B) contains more jobs than the other (A), there 
must be a job that is in B and not in A that can be 
added to A while maintaining feasibility
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Maximization problems 

But: 
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Maximization problems 

SCHEDULING: 
exchange property

• to show: Let A, B ∈ F with A ⊆ B and let x ∈ U-B s.t.  
A ∪ {x} ∈ F. Then there exists Y  ⊆ B-A, |Y| ≤ k, s.t.  
(B-Y) ∪ {x} ∈ F

• in other words: Let A, B  be feasible schedules with  
A ⊆ B.  Let x be a job that is not in B that can augment A 
to a feasible schedule.  

• Then there must exist up to k jobs that are in B and not 
in A such that, once removed from B, B can be 
expanded to a feasible schedule by job x
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Maximization problems 

Illustration
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Maximization problems 

Properties of SCHEDULING  
Summary

• Objective function is linear and submodular

• Set system is downward closed, does not satisfy 
augmentation property (and therefore is not a 
matroid), but satisfies exchange property and 
therefore is a k-extendible system  
 
[Here: k is computed by the longest job processing 
time decided by the shortest (which can be 
considered the time unit)]
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What’s so amazing about 
these properties?

30

• quality guarantees for greedy algorithm  

S ← ∅; A ← ∅ 

repeat 

A ←{e ∈ U| S∪{e} ∈ F} 

if A ≠ ∅ then

S ← S ∪ {u} 

until A = ∅ 

return S The greedy algorithm

generic greedy 
algorithm

u argmax

x2A

g(S [ {x})



When is greedy a good choice?

Quality guarantees
Theorem 1. If set system (U, F) is a matroid and objective function 
g is linear, then the greedy algorithm returns the optimal solution. 

Theorem 2. If set system (U, F) is a matroid and objective function 
g is submodular then the greedy algorithm is an 1/2-approximation. 

Theorem 3. If set system (U, F) is a k-extendible system and 
objective function g is linear then the greedy algorithm is an 1/k-
approximation. 

Theorem 4. If set system (U, F) is a k-extendible system and 
objective function g is submodular then the greedy algorithm is  
an 1/(k+1)-approximation.
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Definition: Approximation Algorithm

• P: maximization problem to be solved 
• A: an algorithm for P 
• x: an arbitrary instance for P 
• A(x): output of A for input x 
• OPT(x): optimal solution for input x 
• A is a ρ-approximation algorithm for P if 

32

g(A(x))

g(OPT (x))
 ⇢



When is greedy a good choice?

Overview of results for 
greedy technique
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linear function submodular 
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When is greedy a good choice?

Constraint-based framework

• Objective function: linear 

• Add structure to constraint set to satisfy matroid or 
k-extendibility property
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When is greedy a good choice?

Objective function based 
framework

• Constraint set: matroid 

• Add structure to objective function to make it linear 
or submodular
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When is greedy a good choice?

Back to SCHEDULING
• Properties 

• Linear function 

• k-extendible system 

• Greedy is a 1/k-approximation 

• Can we tweak the constraints to make it a matroid? 

• yes, if processing times of all jobs are equal then 
augmentation property is satisfied
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When is greedy a good choice?

Recipe
1. Formulate maximization problem as set system and describe 

objective function, according to the GENERIC MAXIMIZATION PROBLEM 

2. Investigate the following: 

1. Is the set system a matroid? 

2. If not: Is the set system a k-extendible system? 

3. Is the objective function linear? 

4. If not: is it submodular?   

3. If no optimal solution: Can you tweak the problem? Give more 
structure to constraints or objective function?
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Conclusions & future works

Conclusions: two frameworks for adding 
structure to maximization problems for 

using greedy technique
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linear function submodular 
function unrestricted

matroid optimal 1/2-
approximation no guarantees

k-extendible 
system

1/k- 
approximation

1/(k+1)-
approximation no guarantees

unrestricted no guarantees no guarantees no guarantees



Conclusions & future works

Future Works 

• Study other tractable algorithm techniques 

• P-time techniques 

• other exact algorithmic techniques 

• When can they be efficiently deployed?
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Thank you!



Group Work
• Pick an optimization problem that you are working 

on (Kostas’ Meeting Scheduler or one of John’s 
problems) and describe it to the group 

• Formalize it: Input (including constraint set and 
objective function) and Goal/Output must be well 
defined 

• Consider your constraints: are they all needed? 
Could there be more? What properties do your 
inputs (for your application) have?
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