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Optimization problems

-+ Given Constraints, objective function

-+ Goal Whatever optimizes the objective function
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A SAS optimization problem

SCHEDULING




SCHEDULING

Input Jobs ji, ..., j.; for each j; the following
constraints

- arrival time a;

- deadline d;

* processing time ¢

* revenue r;

Output A linear schedule of jobs that maximizes their
revenue, that is the sum of the revenues of all
scheduled jobs
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Wishlist of algorithmic properties
for solving SCHEDULING

e Fast

* Optimal or good (the solution is feasible and
satisfies a quality guarantee)




What would be really
greedy”
e Sort the jobs in decreasing order according to their
revenue
e Take (and remove) first job from sorted list
e add to schedule if feasible

* repeat
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Solution quality

Optimal solution
Good quality solution

-

A solution i‘ lFJ)gIIiité/yFunction
Goal
Policy
Action
Policy

[Kephart, Walsh, POLICY 2004]
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What now?

e Possible approach: Come up with better algorithm
* |nstead: tweak the problem

 Add problem structure while keeping greedy
algorithm
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Components of an

optimization problem
SCHEDULING

constraints

T, ..., Jn, 10F €ach;

nstraints
- arrival time a;

- deadline d;
rocessing time ¢

eir  ObJjective
function

utput A linear schedule of jobs that maximi
revenue, that is the sum of the revenues of

uled jobs
7 SAS Ontimization Problem
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GENERIC MAXIMIZATION

PROBLEM

Given Set system (U, F): U is a finite set,

FcC2V satisfies a given constraint set;

objective function g: 2V = IR+: monotone, non-
decreasing

Output SeF for which g has maximum value

14 Maximization problems




SCHEDULING
Input as set system

* D: latest deadline in job list
e Set system (U, F):
- U=1{1,2,....,n}x{1,2, ..., D} with
e (i,j) € U: jobithat starts at time

e F: set of all feasible schedules where for each
(i, )) € SCF, a; <j<d-t

15 Maximization problems



SCHEDULING
objective function

Let S & F be a feasible schedule. Then

g(8)= » 1.

(1,7)€S




Before we can tweak the

oroblem ....
&

7

©

Wanted: a way to figure out how good the
greedy algorithm is for our maximization problem
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Then: two
mathematical frameworks
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- Constraint set

Some definitions ...

- Objective functions
e |linear

e submodular

e matroid

e k-extendible

19



Given set U, function
£ 2> IRY

> w(s)

scA
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Given set U, function
£ 2> IRY

- is linear if for any ACU: fid) =) w(s) for some
scA

given weight function w: U— IR*

e is submodular it {4 U B)+ A4 N B)<fAA)+fB) for
all4,B c U

Note: Not every submodular function is linear but
every linear function is submodular.

20 Maximization problems



A set system (U, F) ...

 |s called a matroid if it satisfies the following
conditions

e Fis downward closed: if 4 C B and B € ‘F then
AEF

o F satisties the augmentation property: for all
A, B € F with |B| > |A4| there exists x € B-4 s.1.

AU {x} €F

21 Maximization problems



A set system (U, F) ...

 |s called a k-extendible if it satisfies the following
conditions

e Fis downward closed

o F satisfies the exchange property: Let 4, BE ‘F
with4C Bandletx& U-Bs.t. AU {x} €F. Then
there exists Y C B-A4, |¥| <k, s.t. (B-Y) U {x} €F.

22 Maximization problems el
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DULING

Properties of SCH
summary

lts objective function is linear and therefore
submodular

lts set system is downward closed

but does not satisty the augmentation property
(and therefore is not a matroid)

Exchange property? Yes: it's a k-extendible system

23 Maximization problems

of Victoria



SCHEDULING
downward closed

e F: set of all feasible schedules

e TOoshow:ifACBand BeFthenA4d&F

e That is we need to show: a subset of a feasible
schedule is also feasible itself

24




SCHEDULING
augmentation property

e to show: for all 4, B € F with |B| > |4| there exists
xEB-Ast. AU {x} €F

e that is: given any two feasible schedules where
one (B) contains more jobs than the other (4), there
must be a job that is in B and not in 4 that can be
added to 4 while maintaining feasibility

25 Maximization problems
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SCHEDULING:
exchange property

e to show: Let4, BE Fwith4C Band letx € U-B s.t.
AU {x} € F. Then there exists Y C B-4, |Y] <k, s.1.
(B-Y)U {x} €F

e In other words: Let 4, B be feasible schedules with
AC B. Letxbe ajob thatis not in B that can augment 4

to a feasible schedule.

* Then there must exist up to & jobs that are in B and not
in 4 such that, once removed from B, B can be
expanded to a feasible schedule by job x

27 Maximization problems
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Properties of SCHEDULING

summary

* Objective function is linear and submodular

* Set system is downward closed, does not satisfy
augmentation property (and therefore is not a
matroid), but satisfies exchange property and
therefore is a k-extendible system

[Here: kis computed by the longest job processing
time decided by the shortest (which can be
considered the time unit)]
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What's so amazing about
these properties?

e quality guarantees for greedy algorithm

S0 A«
repeat

A —{e€ U|Su{e} € F} :
generic greedy
if 4= @ then algorithm

u ¢ argmax g(SuU{z})

S+ Su{u}
until4 =9

return S

30 The greedy algorithm



Quality guarantees

Theorem 1. If set system (U, F) is a matroid and objective function

g is linear, then the greedy algorithm returns the optimal solution.

Theorem 2. If set system (U, F) is a matroid and objective function

g Is submodular then the greedy algorithm is an 1/2-approximation.

Theorem 3. If set system (U, F) is a k-extendible system and

objective function g is linear then the greedy algorithm is an 1/k-
approximation.

Theorem 4. |f set system (U, F) is a k-extendible system and
objective function g is submodular then the greedy algorithm is

an 1/(k+1)-approximation. [Fisher et al, 1978]
> 31 When is greedy a good choice?
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Definition: Approximation Algorithm

P: maximization problem to be solved

A: an algorithm for P

x. an arbitrary instance for P

A(x): output of 4 for input x

OPT(x): optimal solution for input x

A is a p-approximation algorithm for P it

g(A(x))
< JOPT(2)) ="




Overview of results for
greedy technique

: : submodular :
linear function unrestricted

function

1/2-

matroid optimal L
approximation

NO guarantiees

k-extendible 1/k- 1/(k+1)-

. . . . NO guarantees
system approximation  approximation

unrestricted no guarantees  no guarantees  no guarantees
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Constraint-based framework

e Objective function: linear

e Add structure to constraint set to satisfy matroid or
k-extendibility property

34 When is greedy a good choice?



Objective function based
framework

e Constraint set: matroid

e Add structure to objective function to make it linear
or submodular

35  When is greedy a good choice?



Back to SCHEDULING

Properties

* Linear function

* k-extendible system

Greedy is a 1/k-approximation

Can we tweak the constraints to make it a matroid?

* ves, If processing times of all jolbs are equal then
augmentation property is satisfied

36  When is greedy a good choice?



Reclipe

1. Formulate maximization problem as set system and describe
objective function, according to the GENERIC MAXIMIZATION PROBLEM

2. Investigate the following:
1. Is the set system a matroid?

2. If not: Is the set system a k-extendible system?
3. Is the objective function linear?

4. |f not: is it submodular?

3. If no optimal solution: Can you tweak the problem? Give more
structure to constraints or objective function?

37 When is greedy a good choice?



Conclusions: two frameworks for adding
structure to maximization problems for
using greedy technique

: : submodular :
linear function unrestricted

function

1/2-

matroid optimal L
approximation

NO guarantiees

k-extendible 1/k- 1/(k+1)-

. . . . NO guarantees
system approximation  approximation

unrestricted no guarantees  no guarantees  no guarantees

38 Conclusions & future works




Future Works

e Study other tractable algorithm techniques
e P-time techniques
e other exact algorithmic technigues

 When can they be efficiently deployed?
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Group Work

* Pick an optimization problem that you are working
on (Kostas’ Meeting Scheduler or one of John'’s
problems) and describe it to the group

 Formalize it: Input (including constraint set and
objective function) and Goal/Output must be well
defined

e Consider your constraints: are they all needed?
Could there be more”? What properties do your
inputs (for your application) have?
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