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Abstract 

Decision diagrams are the state-of-the-art 
representation for logic functions, both binary and 
multiple-valued.  Here we consider issues regarding the 
efficient implementation of a package for the creation and 
manipulation of multiple-valued decision diagrams 
(MDDs).  In particular, we identify issues that differ from 
binary decision diagram packages.   

We describe a matrix method for level interchange in 
MDDs that is essential for implementing variable 
reordering strategies.  In addition, it is the basis for a 
novel approach to performing logic operations on MDDs, 
which we also present.  Experimental results demonstrate 
the efficiency of this approach. 

 

1.  Introduction 

Since Bryant [2] introduced reduced ordered binary 
decision diagrams (ROBDD) in 1986, they have been 
much studied, including their extension to multiple-
valued logic [6,8] where a function can be represented by 
a directed acyclic graph called a multiple-valued decision 
diagram (MDD).  MDDs are ordered and reduced in a 
fashion analogous to the binary case and the resulting 
representation is termed a reduced ordered MDD 
(ROMDD).   

The efficient implementation of ROBDDs has been 
widely studied [1] and several highly efficient packages 
are available [10].  Many of the binary techniques, or 
extensions thereof, are useful when implementing a 
package for the creation and manipulation of ROMDDs.  
But, there are new problems as well. 

First, the number of edges emanating from a node 
becomes variable. Since the representations of practical 
functions can require quite a large number of nodes (into 
the thousands), it is not practical to assume the highest 
number of edges and thereby waste space for nodes not 
requiring that many.  We consider how to make the 
number of edges flexible. 

It is quite common to use edge negations in ROBDDs 
[7,8].  In moving to ROMDDs, the concept of edge 
negation can be generalised.  We consider how to 
incorporate cyclic negation as an edge operation and how 
to integrate it with various operations on ROMDDs.  A 
similar approach can be used for the MV complement. 

A major contribution of this paper is that we 
generalise the adjacent level interchange approach 
introduced in [4] to the performing of logical operations 
on ROMDDs. 

2.  MDD Representation 

We consider totally-specified p-valued functions 
f X( ) , X = {x0,x1,…,xn-1}, where the xi are also p-valued.  

Such a function can be represented by a multiple-valued 
decision diagram (MDD) which is a directed acyclic 
graph (DAG) with up to p terminal nodes each labelled 
by a distinct logic value 0,1,…,p-1.  Every non-terminal 
node is labelled by an input variable and has p outgoing 
edges; one corresponding to each logic value.  They are 
so labelled.  The diagram is ordered if the variables 
adhere to a single ordering on every path in the graph, 
and no variable appears more than once on any path from 
the root to a terminal node.   

A reduced MDD has no node where all p outgoing 
edges point to the same node and no isomorphic 
subgraphs.  Clearly, no isomorphic subgraphs exist if, and 
only if, no two non-terminal nodes labelled by the same 
variable, have the same direct descendants. With proper 
management, reduction can be achieved as the decision 
diagrams are built, although as we will see, complications 
arise in the level exchange approach to performing logic 
operations. We assume all MDDs are reduced and 
ordered through the rest of this paper as that is the case of 
practical interest. 

For multiple-output problems, we represent the 
functions by a single DAG with multiple top nodes, a 
structure called a shared ROMDD. 

Two important issues in representing decision 
diagrams are the data structures for each node and the 
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techniques used to provide quick navigation through the 
diagram. 

In the binary case, the number of edges from each 
non-terminal node is fixed at two.  Here we must allow 
for a variable number of edges determined by the value of  
p for the function being represented.  Our package uses 
the following node structure (expressed in C): 

 
typedef struct node *DDedge; 
typedef struct node *link; 
 
typedef struct node 
{ 
   int ref; 
   char value,flag; 
   DDedge next,previous; 
   DDedge edge[0]; 
}node; 
 

DDedge and link are both pointer types directed to a 
node.  Two types are used to distinguish the context of 
the pointers.  DDedges are used for the edges in the 
ROMDD whereas links are used for node management.  
For clarity in the explanation below, we shall distinguish 
the two situations as edges and links. 

A node is a structure with several components: 
value: This component is the index of the variable 

labelling a non-terminal node or the value associated 
with a terminal node. 

ref: This is a reference count which is the number of 
edges pointing to the node. It is used to implement 
conventional reference count based garbage 
collection techniques. 

next, previous: These pointers are used to chain a node 
into an appropriate linked list for node management 
(see below). 

edge: This is an array of DDedge’s which is declared 
empty but which is actually allocated as the number 
of edges needed for the node being created.. 

flag: Flag is used to ensure each node is visited once 
when traversing the decision diagram in a depth-first 
manner. 
The node structure shown looks very much like the 

structure used in binary decision diagram packages.  The 
critical difference is the specification of an array of edges 
rather than a fixed number (2 in binary).  As noted, the 
dimension of the array is assigned dynamically when a 
node is created.  For that reason, edge must be at the end 
of the structure. 

The space allocated for a new node depends on p, the 
number of outgoing edges.  For the structure above, we 
have 

 
newp = malloc(sizeof(node) + 
       p * sizeof(DDedge)); 
Nodes often cease to be required in the course of 

manipulating ROMDDs.  Rather than deallocating the 

space (free in C), we chain free nodes into available space 
chains (this is an example of the use of the component 
next in structure node).  We use a separate chain for each 
number of edges.  When space for a new node is required 
we check the available space chain for the required 
number of edges and recover a node from there if 
possible.  Only if the available space chain is empty do 
we allocate new space from the heap using the call to 
malloc indicated above. 

Nodes in an ROMDD are traversed in various ways 
(i) beginning at the top node the ROMDD is traversed by 
following edges from nodes to the descendants, (ii) the 
ROMDD is traversed ‘horizontally’ i.e. the nodes labelled 
by the same variable are traversed for each variable in 
turn, (iii) a combination of the two approaches.  In 
addition, an efficient method is required to identify equal 
nodes so that each time creation of a node is considered, 
it is quick to determine if that node already exists.  This is 
the key to reducing a ROMDD as it is created. 

 Traversing an ROMDD from the top towards the 
terminal node can be accomplished with conventional 
recursive graph traversal techniques.  In some instances, 
it is necessary to ensure a node is visited only once. This 
can be accommodated by associating a flag with each 
node.  Our package use flag for that purpose. 

Traversal across a variable level, and equal node 
identification, are facilitated by our package’s use of 
hashing and node chains (using the components next and 
previous).  We keep a separate hash table for each 
variable.  Each table is an array of pointers where each 
pointer leads to a bi-directional linked list of nodes 
labelled by the relevant variable.  To determine to which 
table entry a node belongs, we treat the outgoing edges as 
integers and compute their sum modulo the number of 
entries in the table.  Note that by choosing the number of 
table entries to be a power of two, the mod operation 
reduces to a logical and operation which is typically 
faster.   

Since addresses of dynamically allocated blocks are 
usually aligned on 8 byte (or higher) boundaries, this 
simple hashing scheme would seem to lose 3 (or more) 
bits of significance.  However, as we show below, the 
bottom bits of the address are ‘borrowed’ for other 
purposes and do prove to be significant in the hashing 
operation. 

Since there is a separate table for each variable, 
traversing all nodes associated with a variable simply 
requires we traverse all lists emanating from the table.  
Determining that a node to be created already exists 
requires we search only one list of nodes in the 
appropriate table, the one identified by hashing the 
outgoing edges.  There are numerous alternatives to this 
approach to hashing, but this technique has been found to 
be effective, particularly given that the number of 
outgoing edges from a node is variable. 
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3. Edge Negations 

There have been several suggestions [7,8] for the use 
of edge negations as a means to further reducing the size 
of a decision diagram.  Unlike the binary case where there 
is only one definition of negation, we must consider 
alternatives in the multiple-valued case. 

Cyclic negation of x by k will be denoted x k↑ , and is 
defined as x x k pk↑ = +( ) mod . We attach an output 
cycle value 0…p-1 to every edge in the graph.  The 
interpretation is that the edge identifies the subfunction 
found by applying the indicated cyclic negation to the 
function represented by the subgraph to which the edge 
points.  For p=2, this is binary negation.  An ingoing edge 
is added to the top node as the entire function may have 
to be cycled.  To preserve the uniqueness of the 
representation, the single terminal node is always labelled 
0, and all 0-edges have cycle value 0. 

Since our primary interest is for functions with p=2, 
3 or 4, rather than add a separate cycle component to our 
representation of an edge, we store the cycle value in the 
bottom two bits of the pointer.  This is possible since, as 
noted above, there are usually unused bits (fixed to 0) at 
the low end of dynamic allocation addresses and at the 
high end if a sufficiently long address is used.  In our 
implementation, the actual bits ‘borrowed’ from the 
pointer to store the cycle are controlled by symbolic 
constants and macros to facilitate porting the package to 
alternative systems.  The hashing function used may have 
to be adapted to maintain full significance if the position 
of the ‘borrowed’ bits is moved 

A second form of negation in multiple-valued logic is 
the complement defined as x p x= − −1 .  Regardless of 
p, this requires a single bit which can again be ‘borrowed’ 
from the pointer address.  In both cases, the negation bits 
must of course be masked out when the pointer is being 
used as an address.  Once again the convention is that a 
complement never appears on a 0-edge. 

4. Adjacent Level Interchange 

Recall that an ROMDD has a certain underlying 
variable ordering.  It is often necessary to exchange two 
adjacent variables, for example in searching for a variable 
ordering for which the size of the ROMDD is smaller, or 
when performing logical operations on ROMDDs (see 
section 6).  We refer to the operation as adjacent level 
interchange since in the latter case nodes represent 
operators as well as variables.  The notion of level comes 
from the fact that it is always possible, and in fact typical, 
that a ROMDD be drawn, or thought of, with all nodes 
labelled the same in a horizontal row across the ROMDD. 

We consider the case of interchanging the levels 
associated with α and β where the former immediately 

precedes the latter.  We assume that all nodes labelled α 
have p outgoing edges and all nodes labelled β have q 
outgoing edges where p and q may or may not be equal.  
This is enforcing the reasonable constraint that while 
nodes with different labels may have differing numbers of 
outgoing edges, all nodes with the same label have the 
same number of outgoing edges. The key is to perform 
the required interchanges as local transformations. 

Consider a node γ labelled α.  We construct a matrix 
T with p rows and q columns.  For i=0,1,…, p-1,  

(i) If the i-edge from γ leads to a node δ labelled β, 
then for j=0,1,…,q-1, Tij is set to point to the 
node pointed to by the j-edge of δ with the edge 
negations being the composition of the edge 
negations on the i-th edge from γ and the j-th 
edge from δ. 

(ii) If the i-edge from γ leads to a node δ not labelled 
β, then Tij is set to the i-edge from γ for 
j=0,1,…,q-1. 

Once T is constructed as above, the level interchange is 
affected by relabelling γ with β, and setting each j-edge 
from γ, j=0,1,…,q-1 to point to a node labelled α whose i-
th edge, i=0,1,…,p-1, points to the node pointed to by Tij. 
During this construction if β denotes a variable, the edge 
negation operations are normalised as described above to 
ensure there is no negation operator on any 0-edge.  It is 
easily confirmed that following this construction, node γ, 
now labelled β, is the top of a decision diagram 
representing the same function it did when originally 
labelled α. 

The complete level interchange is accomplished by 
performing the above for all nodes originally labelled α.  
The idea of relabelling these nodes is critical as it means 
that edges leading to them, and the nodes from whence 
those edges originate, are unaffected by the level 
interchange.  The node must of course be removed from 
its hashing chain, relabelled, and then rehashed.  

The nodes originally labelled β are affected as edges 
to them are removed.  Reference count based garbage 
collection is used as such a node can not be discarded 
unless no other nodes higher in the diagram point to it.  
Finally, no node below the two levels being interchanged 
is affected except for changing the reference count.  The 
result is that the level interchange is a local operation 
affecting only the two levels being interchanged and 
reference counts for some nodes below those levels. 

The above technique is a generalisation of the 
method introduced by Rudell [9].  The use of a matrix 
makes it convenient to deal with a variable number of 
edges and particularly for the case where p q≠ .  
Handling the latter case is essential for the approach 
described in section 6. 
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5. Variable Reordering 

The size of a decision diagram is dependent on the 
variable ordering.  Since finding an optimal variable 
ordering is in general an intractable problem, heuristic 
techniques for finding a good variable ordering have been 
extensively studied.  Sifting, introduced by Rudell [9], is 
a search technique based on the systematic interchange of 
adjacent variables in the ordering.  Given the discussion 
above on adjacent level interchange, sifting and similar 
techniques can be directly applied to ROMDDs.  Our 
package implements sifting. Space does not permit a 
detailed discussion here. 

6. Operator Nodes and Logical Operations 

It is important to be able to efficiently apply logical 
operations to decision diagrams.  One approach involves 
the recursive descent of the diagrams to be combined, but 
this can lead to a significant amount of recomputation 
because a pair of subdiagrams can be reached through 
multiple paths in the diagrams being combined.  This is 
usually solved by using a table to record some number of 
recent computations. Complex hashing and table lookup 
techniques are required. 

A novel approach recently proposed for ROBDDs in 
[4] uses operator nodes.  It is this method that we here 
adapt to ROMDDs.  The idea is to create an ROMDD 
whose top node is labelled by the operation to be 
performed and whose direct descendants are the 
ROMDDs of the functions to be combined.  Level 
interchanges, as described in section 4 above, are used to 
move the operator node(s) to the bottom of the diagram.  
Once an operator node reaches the bottom of the diagram 
and points only to the terminal node, it can be directly 
evaluated and the node substituted by the appropriate 
constant representation. 

Consider the case shown in Fig. 1a.  Interchanging 
the node labelled op with the nodes labelled xi yields the 
diagram shown in Fig. 1b.  The matrix-based level 
interchange method described above is well suited to this 
situation because it deals efficiently with the fact that the 
nodes at the two levels have different numbers of edges. 

In the binary case, operator nodes can be normalised 
so that a negation does not appear on the 0-edge by 
application of De Morgan’s laws.  In the MVL case, this 
can be done for the complement since 
MIN x y MAX x y( , ) ( , )= and MAX x y MIN x y( , ) ( , )= . 

However, no transformation exists to remove a cycle 
from the 0-edge of an operator node.  The solution is to 
go ahead with cycles on 0-edges from operator nodes as 
necessary, but to continue to normalise variable labelled 
nodes.  In this way, the representation will again become 
unique once all operator nodes are removed by level 
interchange. 

xi

a0

op

....
a1 ap-1

xi

b0

....
b1 bp-1

xi

op op op....

a0 b0 a1 b1
ap-1 bp-1

(a) (b)
 

Level Exchange Operation for Operator Nodes 
Figure 1 

 
A clear optimisation is based on the observation that 

operators have particular conditions that can be used to 
shortcut an evaluation.  For example, the MIN of 0 and 
anything is 0 so the level interchange could be aborted 
and the node labelled MIN replaced by the constant 0.  
But, this seemingly simple idea presents a major problem.  
We would in general be replacing a node in the middle of 
a decision diagram and this would require we identify all 
edges leading to the node being substituted and update 
them all.  In fact, this problem arises frequently when 
dealing with operator nodes.   

In [4] the solution suggested for this edge update 
problem is to perform a reduction pass over the decision 
diagram once the operator nodes have been removed by 
successive level interchange.  Here we present a different 
approach. 

The problem to be solved is to replace a node by an 
alternate one that in fact already exists and to update all 
edges leading to the node being replaced.  The fact the 
substitute node already exists means the node to be 
replaced can not simply be updated in place.  Our solution 
is that when a node must be replaced, we set a 
replacement bit in the node (we borrow a high order bit 
from the reference count) and set the 0-edge to point to 
the substitute node.  In our package, each time we access 
an edge, the replacement bit in the target node is checked 
and if appropriate the edge is updated to point to the 
replacement node.  The reference count is adjusted, and 
once all edges to the node being substituted are updated, 
it will pass out of existence through the normal garbage 
collection process.  Note that once a node’s replacement 
bit is set, it is ignored in the node equality check when a 
new node is being created.  This ensures that multiple 
instances of the same node all map to a single hash chain 
entry. 

Clearly, a node can be marked to be replaced because 
processing an operator creates a node that has already 
been created and hence already exists in the hash tables.  
Not so obvious is that a replacement can be created 
simply to resolve the normalisation of a node i.e. the need 
to add a cycle value to all edges leading to a node.  This 
latter case is resolved by the same replacement process 
used to deal with duplicate nodes. 
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The above approach carries a minor execution cost as 
the replacement bit must be checked every time an edge is 
followed.  That can be done very quickly and is seen as 
preferable to a complete reduction pass each time a 
logical operation is performed on ROMDDs. 

The elimination of operator nodes can be made 
somewhat faster by the observation that our goal is to 
perform interchanges so that all operator nodes move to 
the bottom of the graph and then disappear.  Hence rather 
than interchanging an operator node with the level below 
it, we treat each operator node separately.  We determine 
the ‘highest’ variable labelling a direct descendant of the 
operator node and perform the interchange between the 
operator node and that variable.  An interchange creates 
new operator nodes so we must repeat this process until 
all operator nodes are eliminated.   

The order in which operator nodes are processed is 
critical.  Our procedure for processing an operator node is 
as follows: 
 
Algorithm 1: Operator Node Processing 
 
Let n be the operator node to be processed: 
1. If n is a terminal node return. 
2. Remove n from the appropriate hash chain. 
3. Apply the transformation illustrated in Fig. 1.  Note 

that a check is made for simplifications as the new 
operator nodes are created e.g. the MIN of x and 0 is 
x, whereas the MAX of x and p-1 is p-1, etc. 

4. Recursively apply this algorithm to the operator 
nodes created in step (3). 

5. Now check each direct descendant of n and do the 
appropriate edge replacement in n if the replacement 
bit is set in the descendant. 

6. Rehash n, and insert it into the appropriate hash 
chain.  Note that the process of reinserting n may set 
its replacement bit. 

 
For efficiency, the recursion can be removed by 

maintaining a last-in, first-out queue (stack) of nodes.  
This is the approach used in our package. 

7.   Experimental Results 

As an example of the use of the techniques 
described above, we present results on converting cube 
list specifications to decision diagrams.  We use binary 
benchmark problems in two ways, as given for the BDD 
case, and converted to 4-valued problems for the MDD 
case.  The conversion of a binary problem to a 4-valued 
problem is done by taking the inputs in pairs from left to 
right.  If there is an odd number of inputs, the rightmost 
input remains a binary input.  The binary outputs are 
converted to 4-valued outputs in the same way. 

 
 

   binary specification MDD BDD  
in out Cubes size size % 

9sym 9 1 88 18 25 72.00% 
alu2 10 8 70 48 134 35.82% 
alu4 14 8 1028 510 1197 42.61% 
bw 5 28 25 66 108 61.11% 
duke2 22 29 87 711 973 73.07% 
mdiv7 8 10 256 78 183 42.62% 
misex1 8 7 32 39 41 95.12% 
misex2 25 18 29 128 136 94.12% 
misex3 14 14 1848 351 1301 26.98% 
postal 8 1 256 11 25 44.00% 
rd53 5 3 32 14 17 82.35% 
rd73 7 3 141 20 31 64.52% 
rd84 8 4 256 22 42 52.38% 
sao2 10 4 58 60 155 38.71% 
74181 14 8 1133 431 858 50.23% 
vg2 25 8 110 685 1044 65.61% 
Total  3192 6270 50.91% 

Table I: Comparison of ROMDDs and ROBDDs 
 

In both the binary and the multiple-valued case, the 
cubes are converted to decision diagrams that are in turn 
combined to form the decision diagrams for the outputs.  
The decision diagram for the input side of a cube has a 
well-defined structure that can be determined directly.  To 
combine a cube with an output, we use a level exchange 
based logic operation, OR in the binary case and MAX in 
the multiple-valued case.  For the multiple-valued case, a 
MIN must first be applied to the cube to account for the 
value the cube is to take for the particular output. 

Experimental results for a number of binary 
benchmarks are shown in Table 1.  These were run on a 
Sun-690 dual 166 MHz processor system with 128MB of 
memory.  The gnu C-compiler was used with level 4 
optimisation. 

BDD size is the number of nodes in the shared 
reduced ordered binary decision diagram build from the 
binary cube list.  MDD size is the number of nodes in the 
shared ROMDD built from the 4-valued problem derived 
from the binary problem as described above.  Variable 
reordering is not used, i.e. the variables are taken in the 
order given with the leftmost variable at the bottom of the 
decision diagram and the rightmost variable at the top.   

As one would expect the total number of nodes in 
the 4-valued case is about 50% of the binary total.  It is 
somewhat surprising however how much variation there 
is between examples, from 27% to 94%.  

Table II shows the effect of using cycles for the 4-
valued versions of the benchmarks.  The overall saving is 
4.25%.  Once again, the reduction varies across the 
examples, from 0% to 12%. 
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 size 
cycles 

size 
 

% max 
nodes 

time 
(a) 

time 
(b) 

9sym 18 18 0.00% 81 110 140 
alu2 48 53 9.43% 78 50 80 
alu4 510 537 5.03% 639 7191 9671 
bw 66 73 9.59% 98 70 70 
duke2 711 726 2.07% 832 310 4940 
mdiv7 78 79 1.27% 120 420 680 
misex1 39 39 0.00% 53 10 20 
misex2 128 128 0.00% 148 20 100 
misex3 351 366 4.10% 435 3620 12652
postal 11 11 0.00% 40 10 10 
rd53 14 15 6.67% 27 10 20 
rd73 20 21 4.76% 39 70 110 
rd84 22 25 12.00% 58 180 250 
sao2 42 65 6.67% 98 50 50 
74181 431 469 8.10% 732 4340 7541 
vg2 685 690 0.72% 1023 600 23494
Total 3174 3315 4.25%  17061 59828

 
Table II: Effect of cycles and evaluation strategy. 

(a) Time for level exchange (msec.) 
(b) Time for recursive descent (msec.) 

 
Table II also shows the execution time (a) for the 

level exchange method described in section 6, and (b) for 
the same program with the traversal described in 
algorithm 1 replaced with a depth-first traversal of the 
operator nodes.  The latter is equivalent to a recursive 
descent implementation of logic operations without the 
use of a recent computation table.  

The advantage of the level interchange method is 
clear.  In total, over all the examples, it takes 28.5% of the 
time.  Simple stack management of the operator nodes 
thus avoids the need for a more complex approach such 
as a recent computation table. 

For the larger problems, the MDD package is 
typically two or three times slower than an optimised 
BDD package, and can be as much as eight times slower 
e.g. for example alu4.  The BDD package we used is 
highly optimised and in particular makes heavy use of the 
fact there are only two edges from each node.  The edge 
count flexibility in the MDD package implemented via 
the array edge in each node comes at an execution 
penalty.  An alternative would be to use conditional 
compilation to customise the package to different 
numbers of logic values.  This requires further study.  
There is also a higher cost associated for the handling of 
cycles than there is for the handling of edge negation in 
the binary case. 

8.   Concluding Remarks 

This paper has considered issues that arise in 
implementing an MDD package.  A matrix approach for 
adjacent level interchange has been presented and has 
been shown to be effective in implementing logical 
operations on ROMDDs.  It is also the basis for variable 
reordering using a technique such as sifting. 

We are continuing to optimise the implementation.  
Profiling has shown that looking-up nodes in the hash 
chains is the most time-consuming operation.  We are 
considering how to improve the existing approach and we 
are also considering alternative hashing techniques. 
Experiments are required on larger functions to assess the 
true efficiency of the proposed methods. 

One area for further development is to extend the 
package to other types of multiple-valued decision 
diagrams. 

The techniques described in this paper have been 
incorporated in a ROMDD package written in C.  This 
package is available at www.csr.uvic.ca/~mmiller/MDD. 

References 

[1] Brace, K. S., R L. Rudell and R. E. Bryant, “Efficient 
implementation of a BDD package”, Proc. Design 
Automation Conference, pp. 40-45, 1990. 

[2] Bryant, R.E., “Graph-based algorithms for Boolean 
function manipulation,” IEEE Trans. on Computers, V. C-
35, no. 8, pp. 677-691, 1986. 

[3] Hett, A., R. Drechsler and B. Becker, “MORE: 
Alternative implementation of BDD packages by multi-
operand synthesis,” Proc. European Design Automation 
Conference, pp. 164-169, 1996. 

[4] Hett, A., R. Drechsler and B. Becker, “Reordering based 
synthesis,” Proc. Reed-Muller Workshop 97, pp. 13-22, 
1997. 

[5] Lau, H.T., and C.-S. Lim, “On the OBDD representation 
of general Boolean functions,” IEEE Trans. on Comp., C-
41, No. 6, pp. 661-664, 1992. 

[6] Miller, D.M., “Multiple-valued logic design tools,” 
(Invited Address) Proc. 23rd Int. Symp. on Multiple-
Valued Logic, pp. 2-11, May 1993. 

[7] Minato, S., N. Ishiura and S. Yajima, “Shared binary 
decision diagrams with attributed edges for efficient 
Boolean function manipulation,” Proc. ACM/IEEE Design 
Automation Conference, pp. 52-57, 1990. 

[8] Minato, S., “Graph-based representations of discrete 
functions,” Proc. IFIP WG 10.5 Workshop on the 
Application of Reed-Muller Expansion in Circuit Design,, 
pp. 1-10, 1995. 

[9] Rudell, R. “Dynamic variable ordering for ordered binary 
decision diagrams,” Proc. IEEE/ACM ICCAD, pp. 43-47, 
1993. 

[10] Somenzi, F., “CUDD: CU Decision Diagram 
Package,” http://bessie.colorado.edu/~fabio/ CUDD 


