

ISMVL-98 Page 1

Implementing a Multiple-Valued Decision Diagram Package

 D. Michael Miller Rolf Drechsler
 VLSI Design and Test Group Institute of Computer Science
 Department of Computer Science Albert-Ludwigs-University
 University of Victoria 79110 Freiburg im Briesgau
 Victoria, BC GERMANY
 CANADA V8W 3P6 drechsle@informatik.uni-freibug.de
 mmiller@csr.uvic.ca

Abstract

Decision diagrams are the state-of-the-art
representation for logic functions, both binary and
multiple-valued. Here we consider issues regarding the
efficient implementation of a package for the creation and
manipulation of multiple-valued decision diagrams
(MDDs). In particular, we identify issues that differ from
binary decision diagram packages.

We describe a matrix method for level interchange in
MDDs that is essential for implementing variable
reordering strategies. In addition, it is the basis for a
novel approach to performing logic operations on MDDs,
which we also present. Experimental results demonstrate
the efficiency of this approach.

1. Introduction

Since Bryant [2] introduced reduced ordered binary
decision diagrams (ROBDD) in 1986, they have been
much studied, including their extension to multiple-
valued logic [6,8] where a function can be represented by
a directed acyclic graph called a multiple-valued decision
diagram (MDD). MDDs are ordered and reduced in a
fashion analogous to the binary case and the resulting
representation is termed a reduced ordered MDD
(ROMDD).

The efficient implementation of ROBDDs has been
widely studied [1] and several highly efficient packages
are available [10]. Many of the binary techniques, or
extensions thereof, are useful when implementing a
package for the creation and manipulation of ROMDDs.
But, there are new problems as well.

First, the number of edges emanating from a node
becomes variable. Since the representations of practical
functions can require quite a large number of nodes (into
the thousands), it is not practical to assume the highest
number of edges and thereby waste space for nodes not
requiring that many. We consider how to make the
number of edges flexible.

It is quite common to use edge negations in ROBDDs
[7,8]. In moving to ROMDDs, the concept of edge
negation can be generalised. We consider how to
incorporate cyclic negation as an edge operation and how
to integrate it with various operations on ROMDDs. A
similar approach can be used for the MV complement.

A major contribution of this paper is that we
generalise the adjacent level interchange approach
introduced in [4] to the performing of logical operations
on ROMDDs.

2. MDD Representation

We consider totally-specified p-valued functions
f X() , X = {x0,x1,…,xn-1}, where the xi are also p-valued.

Such a function can be represented by a multiple-valued
decision diagram (MDD) which is a directed acyclic
graph (DAG) with up to p terminal nodes each labelled
by a distinct logic value 0,1,…,p-1. Every non-terminal
node is labelled by an input variable and has p outgoing
edges; one corresponding to each logic value. They are
so labelled. The diagram is ordered if the variables
adhere to a single ordering on every path in the graph,
and no variable appears more than once on any path from
the root to a terminal node.

A reduced MDD has no node where all p outgoing
edges point to the same node and no isomorphic
subgraphs. Clearly, no isomorphic subgraphs exist if, and
only if, no two non-terminal nodes labelled by the same
variable, have the same direct descendants. With proper
management, reduction can be achieved as the decision
diagrams are built, although as we will see, complications
arise in the level exchange approach to performing logic
operations. We assume all MDDs are reduced and
ordered through the rest of this paper as that is the case of
practical interest.

For multiple-output problems, we represent the
functions by a single DAG with multiple top nodes, a
structure called a shared ROMDD.

Two important issues in representing decision
diagrams are the data structures for each node and the

ISMVL-98 Page 2

techniques used to provide quick navigation through the
diagram.

In the binary case, the number of edges from each
non-terminal node is fixed at two. Here we must allow
for a variable number of edges determined by the value of
p for the function being represented. Our package uses
the following node structure (expressed in C):

typedef struct node *DDedge;
typedef struct node *link;

typedef struct node
{
 int ref;
 char value,flag;
 DDedge next,previous;
 DDedge edge[0];
}node;

DDedge and link are both pointer types directed to a
node. Two types are used to distinguish the context of
the pointers. DDedges are used for the edges in the
ROMDD whereas links are used for node management.
For clarity in the explanation below, we shall distinguish
the two situations as edges and links.

A node is a structure with several components:
value: This component is the index of the variable

labelling a non-terminal node or the value associated
with a terminal node.

ref: This is a reference count which is the number of
edges pointing to the node. It is used to implement
conventional reference count based garbage
collection techniques.

next, previous: These pointers are used to chain a node
into an appropriate linked list for node management
(see below).

edge: This is an array of DDedge’s which is declared
empty but which is actually allocated as the number
of edges needed for the node being created..

flag: Flag is used to ensure each node is visited once
when traversing the decision diagram in a depth-first
manner.
The node structure shown looks very much like the

structure used in binary decision diagram packages. The
critical difference is the specification of an array of edges
rather than a fixed number (2 in binary). As noted, the
dimension of the array is assigned dynamically when a
node is created. For that reason, edge must be at the end
of the structure.

The space allocated for a new node depends on p, the
number of outgoing edges. For the structure above, we
have

newp = malloc(sizeof(node) +
 p * sizeof(DDedge));
Nodes often cease to be required in the course of

manipulating ROMDDs. Rather than deallocating the

space (free in C), we chain free nodes into available space
chains (this is an example of the use of the component
next in structure node). We use a separate chain for each
number of edges. When space for a new node is required
we check the available space chain for the required
number of edges and recover a node from there if
possible. Only if the available space chain is empty do
we allocate new space from the heap using the call to
malloc indicated above.

Nodes in an ROMDD are traversed in various ways
(i) beginning at the top node the ROMDD is traversed by
following edges from nodes to the descendants, (ii) the
ROMDD is traversed ‘horizontally’ i.e. the nodes labelled
by the same variable are traversed for each variable in
turn, (iii) a combination of the two approaches. In
addition, an efficient method is required to identify equal
nodes so that each time creation of a node is considered,
it is quick to determine if that node already exists. This is
the key to reducing a ROMDD as it is created.

 Traversing an ROMDD from the top towards the
terminal node can be accomplished with conventional
recursive graph traversal techniques. In some instances,
it is necessary to ensure a node is visited only once. This
can be accommodated by associating a flag with each
node. Our package use flag for that purpose.

Traversal across a variable level, and equal node
identification, are facilitated by our package’s use of
hashing and node chains (using the components next and
previous). We keep a separate hash table for each
variable. Each table is an array of pointers where each
pointer leads to a bi-directional linked list of nodes
labelled by the relevant variable. To determine to which
table entry a node belongs, we treat the outgoing edges as
integers and compute their sum modulo the number of
entries in the table. Note that by choosing the number of
table entries to be a power of two, the mod operation
reduces to a logical and operation which is typically
faster.

Since addresses of dynamically allocated blocks are
usually aligned on 8 byte (or higher) boundaries, this
simple hashing scheme would seem to lose 3 (or more)
bits of significance. However, as we show below, the
bottom bits of the address are ‘borrowed’ for other
purposes and do prove to be significant in the hashing
operation.

Since there is a separate table for each variable,
traversing all nodes associated with a variable simply
requires we traverse all lists emanating from the table.
Determining that a node to be created already exists
requires we search only one list of nodes in the
appropriate table, the one identified by hashing the
outgoing edges. There are numerous alternatives to this
approach to hashing, but this technique has been found to
be effective, particularly given that the number of
outgoing edges from a node is variable.

ISMVL-98 Page 3

3. Edge Negations

There have been several suggestions [7,8] for the use
of edge negations as a means to further reducing the size
of a decision diagram. Unlike the binary case where there
is only one definition of negation, we must consider
alternatives in the multiple-valued case.

Cyclic negation of x by k will be denoted x k↑ , and is
defined as x x k pk↑ = +() mod . We attach an output
cycle value 0…p-1 to every edge in the graph. The
interpretation is that the edge identifies the subfunction
found by applying the indicated cyclic negation to the
function represented by the subgraph to which the edge
points. For p=2, this is binary negation. An ingoing edge
is added to the top node as the entire function may have
to be cycled. To preserve the uniqueness of the
representation, the single terminal node is always labelled
0, and all 0-edges have cycle value 0.

Since our primary interest is for functions with p=2,
3 or 4, rather than add a separate cycle component to our
representation of an edge, we store the cycle value in the
bottom two bits of the pointer. This is possible since, as
noted above, there are usually unused bits (fixed to 0) at
the low end of dynamic allocation addresses and at the
high end if a sufficiently long address is used. In our
implementation, the actual bits ‘borrowed’ from the
pointer to store the cycle are controlled by symbolic
constants and macros to facilitate porting the package to
alternative systems. The hashing function used may have
to be adapted to maintain full significance if the position
of the ‘borrowed’ bits is moved

A second form of negation in multiple-valued logic is
the complement defined as x p x= − −1 . Regardless of
p, this requires a single bit which can again be ‘borrowed’
from the pointer address. In both cases, the negation bits
must of course be masked out when the pointer is being
used as an address. Once again the convention is that a
complement never appears on a 0-edge.

4. Adjacent Level Interchange

Recall that an ROMDD has a certain underlying
variable ordering. It is often necessary to exchange two
adjacent variables, for example in searching for a variable
ordering for which the size of the ROMDD is smaller, or
when performing logical operations on ROMDDs (see
section 6). We refer to the operation as adjacent level
interchange since in the latter case nodes represent
operators as well as variables. The notion of level comes
from the fact that it is always possible, and in fact typical,
that a ROMDD be drawn, or thought of, with all nodes
labelled the same in a horizontal row across the ROMDD.

We consider the case of interchanging the levels
associated with α and β where the former immediately

precedes the latter. We assume that all nodes labelled α
have p outgoing edges and all nodes labelled β have q
outgoing edges where p and q may or may not be equal.
This is enforcing the reasonable constraint that while
nodes with different labels may have differing numbers of
outgoing edges, all nodes with the same label have the
same number of outgoing edges. The key is to perform
the required interchanges as local transformations.

Consider a node γ labelled α. We construct a matrix
T with p rows and q columns. For i=0,1,…, p-1,

(i) If the i-edge from γ leads to a node δ labelled β,
then for j=0,1,…,q-1, Tij is set to point to the
node pointed to by the j-edge of δ with the edge
negations being the composition of the edge
negations on the i-th edge from γ and the j-th
edge from δ.

(ii) If the i-edge from γ leads to a node δ not labelled
β, then Tij is set to the i-edge from γ for
j=0,1,…,q-1.

Once T is constructed as above, the level interchange is
affected by relabelling γ with β, and setting each j-edge
from γ, j=0,1,…,q-1 to point to a node labelled α whose i-
th edge, i=0,1,…,p-1, points to the node pointed to by Tij.
During this construction if β denotes a variable, the edge
negation operations are normalised as described above to
ensure there is no negation operator on any 0-edge. It is
easily confirmed that following this construction, node γ,
now labelled β, is the top of a decision diagram
representing the same function it did when originally
labelled α.

The complete level interchange is accomplished by
performing the above for all nodes originally labelled α.
The idea of relabelling these nodes is critical as it means
that edges leading to them, and the nodes from whence
those edges originate, are unaffected by the level
interchange. The node must of course be removed from
its hashing chain, relabelled, and then rehashed.

The nodes originally labelled β are affected as edges
to them are removed. Reference count based garbage
collection is used as such a node can not be discarded
unless no other nodes higher in the diagram point to it.
Finally, no node below the two levels being interchanged
is affected except for changing the reference count. The
result is that the level interchange is a local operation
affecting only the two levels being interchanged and
reference counts for some nodes below those levels.

The above technique is a generalisation of the
method introduced by Rudell [9]. The use of a matrix
makes it convenient to deal with a variable number of
edges and particularly for the case where p q≠ .
Handling the latter case is essential for the approach
described in section 6.

ISMVL-98 Page 4

5. Variable Reordering

The size of a decision diagram is dependent on the
variable ordering. Since finding an optimal variable
ordering is in general an intractable problem, heuristic
techniques for finding a good variable ordering have been
extensively studied. Sifting, introduced by Rudell [9], is
a search technique based on the systematic interchange of
adjacent variables in the ordering. Given the discussion
above on adjacent level interchange, sifting and similar
techniques can be directly applied to ROMDDs. Our
package implements sifting. Space does not permit a
detailed discussion here.

6. Operator Nodes and Logical Operations

It is important to be able to efficiently apply logical
operations to decision diagrams. One approach involves
the recursive descent of the diagrams to be combined, but
this can lead to a significant amount of recomputation
because a pair of subdiagrams can be reached through
multiple paths in the diagrams being combined. This is
usually solved by using a table to record some number of
recent computations. Complex hashing and table lookup
techniques are required.

A novel approach recently proposed for ROBDDs in
[4] uses operator nodes. It is this method that we here
adapt to ROMDDs. The idea is to create an ROMDD
whose top node is labelled by the operation to be
performed and whose direct descendants are the
ROMDDs of the functions to be combined. Level
interchanges, as described in section 4 above, are used to
move the operator node(s) to the bottom of the diagram.
Once an operator node reaches the bottom of the diagram
and points only to the terminal node, it can be directly
evaluated and the node substituted by the appropriate
constant representation.

Consider the case shown in Fig. 1a. Interchanging
the node labelled op with the nodes labelled xi yields the
diagram shown in Fig. 1b. The matrix-based level
interchange method described above is well suited to this
situation because it deals efficiently with the fact that the
nodes at the two levels have different numbers of edges.

In the binary case, operator nodes can be normalised
so that a negation does not appear on the 0-edge by
application of De Morgan’s laws. In the MVL case, this
can be done for the complement since
MIN x y MAX x y(,) (,)= and MAX x y MIN x y(,) (,)= .

However, no transformation exists to remove a cycle
from the 0-edge of an operator node. The solution is to
go ahead with cycles on 0-edges from operator nodes as
necessary, but to continue to normalise variable labelled
nodes. In this way, the representation will again become
unique once all operator nodes are removed by level
interchange.

xi

a0

op

....
a1 ap-1

xi

b0

....
b1 bp-1

xi

op op op....

a0 b0 a1 b1
ap-1 bp-1

(a) (b)

Level Exchange Operation for Operator Nodes
Figure 1

A clear optimisation is based on the observation that

operators have particular conditions that can be used to
shortcut an evaluation. For example, the MIN of 0 and
anything is 0 so the level interchange could be aborted
and the node labelled MIN replaced by the constant 0.
But, this seemingly simple idea presents a major problem.
We would in general be replacing a node in the middle of
a decision diagram and this would require we identify all
edges leading to the node being substituted and update
them all. In fact, this problem arises frequently when
dealing with operator nodes.

In [4] the solution suggested for this edge update
problem is to perform a reduction pass over the decision
diagram once the operator nodes have been removed by
successive level interchange. Here we present a different
approach.

The problem to be solved is to replace a node by an
alternate one that in fact already exists and to update all
edges leading to the node being replaced. The fact the
substitute node already exists means the node to be
replaced can not simply be updated in place. Our solution
is that when a node must be replaced, we set a
replacement bit in the node (we borrow a high order bit
from the reference count) and set the 0-edge to point to
the substitute node. In our package, each time we access
an edge, the replacement bit in the target node is checked
and if appropriate the edge is updated to point to the
replacement node. The reference count is adjusted, and
once all edges to the node being substituted are updated,
it will pass out of existence through the normal garbage
collection process. Note that once a node’s replacement
bit is set, it is ignored in the node equality check when a
new node is being created. This ensures that multiple
instances of the same node all map to a single hash chain
entry.

Clearly, a node can be marked to be replaced because
processing an operator creates a node that has already
been created and hence already exists in the hash tables.
Not so obvious is that a replacement can be created
simply to resolve the normalisation of a node i.e. the need
to add a cycle value to all edges leading to a node. This
latter case is resolved by the same replacement process
used to deal with duplicate nodes.

ISMVL-98 Page 5

The above approach carries a minor execution cost as
the replacement bit must be checked every time an edge is
followed. That can be done very quickly and is seen as
preferable to a complete reduction pass each time a
logical operation is performed on ROMDDs.

The elimination of operator nodes can be made
somewhat faster by the observation that our goal is to
perform interchanges so that all operator nodes move to
the bottom of the graph and then disappear. Hence rather
than interchanging an operator node with the level below
it, we treat each operator node separately. We determine
the ‘highest’ variable labelling a direct descendant of the
operator node and perform the interchange between the
operator node and that variable. An interchange creates
new operator nodes so we must repeat this process until
all operator nodes are eliminated.

The order in which operator nodes are processed is
critical. Our procedure for processing an operator node is
as follows:

Algorithm 1: Operator Node Processing

Let n be the operator node to be processed:
1. If n is a terminal node return.
2. Remove n from the appropriate hash chain.
3. Apply the transformation illustrated in Fig. 1. Note

that a check is made for simplifications as the new
operator nodes are created e.g. the MIN of x and 0 is
x, whereas the MAX of x and p-1 is p-1, etc.

4. Recursively apply this algorithm to the operator
nodes created in step (3).

5. Now check each direct descendant of n and do the
appropriate edge replacement in n if the replacement
bit is set in the descendant.

6. Rehash n, and insert it into the appropriate hash
chain. Note that the process of reinserting n may set
its replacement bit.

For efficiency, the recursion can be removed by

maintaining a last-in, first-out queue (stack) of nodes.
This is the approach used in our package.

7. Experimental Results

As an example of the use of the techniques
described above, we present results on converting cube
list specifications to decision diagrams. We use binary
benchmark problems in two ways, as given for the BDD
case, and converted to 4-valued problems for the MDD
case. The conversion of a binary problem to a 4-valued
problem is done by taking the inputs in pairs from left to
right. If there is an odd number of inputs, the rightmost
input remains a binary input. The binary outputs are
converted to 4-valued outputs in the same way.

 binary specification MDD BDD
in out Cubes size size %

9sym 9 1 88 18 25 72.00%
alu2 10 8 70 48 134 35.82%
alu4 14 8 1028 510 1197 42.61%
bw 5 28 25 66 108 61.11%
duke2 22 29 87 711 973 73.07%
mdiv7 8 10 256 78 183 42.62%
misex1 8 7 32 39 41 95.12%
misex2 25 18 29 128 136 94.12%
misex3 14 14 1848 351 1301 26.98%
postal 8 1 256 11 25 44.00%
rd53 5 3 32 14 17 82.35%
rd73 7 3 141 20 31 64.52%
rd84 8 4 256 22 42 52.38%
sao2 10 4 58 60 155 38.71%
74181 14 8 1133 431 858 50.23%
vg2 25 8 110 685 1044 65.61%
Total 3192 6270 50.91%

Table I: Comparison of ROMDDs and ROBDDs

In both the binary and the multiple-valued case, the
cubes are converted to decision diagrams that are in turn
combined to form the decision diagrams for the outputs.
The decision diagram for the input side of a cube has a
well-defined structure that can be determined directly. To
combine a cube with an output, we use a level exchange
based logic operation, OR in the binary case and MAX in
the multiple-valued case. For the multiple-valued case, a
MIN must first be applied to the cube to account for the
value the cube is to take for the particular output.

Experimental results for a number of binary
benchmarks are shown in Table 1. These were run on a
Sun-690 dual 166 MHz processor system with 128MB of
memory. The gnu C-compiler was used with level 4
optimisation.

BDD size is the number of nodes in the shared
reduced ordered binary decision diagram build from the
binary cube list. MDD size is the number of nodes in the
shared ROMDD built from the 4-valued problem derived
from the binary problem as described above. Variable
reordering is not used, i.e. the variables are taken in the
order given with the leftmost variable at the bottom of the
decision diagram and the rightmost variable at the top.

As one would expect the total number of nodes in
the 4-valued case is about 50% of the binary total. It is
somewhat surprising however how much variation there
is between examples, from 27% to 94%.

Table II shows the effect of using cycles for the 4-
valued versions of the benchmarks. The overall saving is
4.25%. Once again, the reduction varies across the
examples, from 0% to 12%.

ISMVL-98 Page 6

 size
cycles

size

% max
nodes

time
(a)

time
(b)

9sym 18 18 0.00% 81 110 140
alu2 48 53 9.43% 78 50 80
alu4 510 537 5.03% 639 7191 9671
bw 66 73 9.59% 98 70 70
duke2 711 726 2.07% 832 310 4940
mdiv7 78 79 1.27% 120 420 680
misex1 39 39 0.00% 53 10 20
misex2 128 128 0.00% 148 20 100
misex3 351 366 4.10% 435 3620 12652
postal 11 11 0.00% 40 10 10
rd53 14 15 6.67% 27 10 20
rd73 20 21 4.76% 39 70 110
rd84 22 25 12.00% 58 180 250
sao2 42 65 6.67% 98 50 50
74181 431 469 8.10% 732 4340 7541
vg2 685 690 0.72% 1023 600 23494
Total 3174 3315 4.25% 17061 59828

Table II: Effect of cycles and evaluation strategy.

(a) Time for level exchange (msec.)
(b) Time for recursive descent (msec.)

Table II also shows the execution time (a) for the

level exchange method described in section 6, and (b) for
the same program with the traversal described in
algorithm 1 replaced with a depth-first traversal of the
operator nodes. The latter is equivalent to a recursive
descent implementation of logic operations without the
use of a recent computation table.

The advantage of the level interchange method is
clear. In total, over all the examples, it takes 28.5% of the
time. Simple stack management of the operator nodes
thus avoids the need for a more complex approach such
as a recent computation table.

For the larger problems, the MDD package is
typically two or three times slower than an optimised
BDD package, and can be as much as eight times slower
e.g. for example alu4. The BDD package we used is
highly optimised and in particular makes heavy use of the
fact there are only two edges from each node. The edge
count flexibility in the MDD package implemented via
the array edge in each node comes at an execution
penalty. An alternative would be to use conditional
compilation to customise the package to different
numbers of logic values. This requires further study.
There is also a higher cost associated for the handling of
cycles than there is for the handling of edge negation in
the binary case.

8. Concluding Remarks

This paper has considered issues that arise in
implementing an MDD package. A matrix approach for
adjacent level interchange has been presented and has
been shown to be effective in implementing logical
operations on ROMDDs. It is also the basis for variable
reordering using a technique such as sifting.

We are continuing to optimise the implementation.
Profiling has shown that looking-up nodes in the hash
chains is the most time-consuming operation. We are
considering how to improve the existing approach and we
are also considering alternative hashing techniques.
Experiments are required on larger functions to assess the
true efficiency of the proposed methods.

One area for further development is to extend the
package to other types of multiple-valued decision
diagrams.

The techniques described in this paper have been
incorporated in a ROMDD package written in C. This
package is available at www.csr.uvic.ca/~mmiller/MDD.

References

[1] Brace, K. S., R L. Rudell and R. E. Bryant, “Efficient
implementation of a BDD package”, Proc. Design
Automation Conference, pp. 40-45, 1990.

[2] Bryant, R.E., “Graph-based algorithms for Boolean
function manipulation,” IEEE Trans. on Computers, V. C-
35, no. 8, pp. 677-691, 1986.

[3] Hett, A., R. Drechsler and B. Becker, “MORE:
Alternative implementation of BDD packages by multi-
operand synthesis,” Proc. European Design Automation
Conference, pp. 164-169, 1996.

[4] Hett, A., R. Drechsler and B. Becker, “Reordering based
synthesis,” Proc. Reed-Muller Workshop 97, pp. 13-22,
1997.

[5] Lau, H.T., and C.-S. Lim, “On the OBDD representation
of general Boolean functions,” IEEE Trans. on Comp., C-
41, No. 6, pp. 661-664, 1992.

[6] Miller, D.M., “Multiple-valued logic design tools,”
(Invited Address) Proc. 23rd Int. Symp. on Multiple-
Valued Logic, pp. 2-11, May 1993.

[7] Minato, S., N. Ishiura and S. Yajima, “Shared binary
decision diagrams with attributed edges for efficient
Boolean function manipulation,” Proc. ACM/IEEE Design
Automation Conference, pp. 52-57, 1990.

[8] Minato, S., “Graph-based representations of discrete
functions,” Proc. IFIP WG 10.5 Workshop on the
Application of Reed-Muller Expansion in Circuit Design,,
pp. 1-10, 1995.

[9] Rudell, R. “Dynamic variable ordering for ordered binary
decision diagrams,” Proc. IEEE/ACM ICCAD, pp. 43-47,
1993.

[10] Somenzi, F., “CUDD: CU Decision Diagram
Package,” http://bessie.colorado.edu/~fabio/ CUDD

