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ABSTRACT 
A digital circuit is reversible if it maps each input vector into a 
unique output vector. Reversible circuits can lead to low-power 
CMOS implementations and are also of interest in optical and 
quantum computing. In this paper, we consider the synthesis of 
reversible logic assuming primitive reversible devices such as 
Feynman, Toffoli and Fredkin gates. In particular, we consider the 
use of Rademacher-Walsh spectral techniques and two-place 
decompositions of Boolean functions. Preliminary results are 
given for reversible and nonreversible functions and show that the 
approaches described do indeed show promise. 

1. INTRODUCTION 

A digital circuit is reversible if it maps each input pattern to a 
unique output pattern.  Landauer [8] proved that traditional 
irreversible gates lead to power dissipation in a circuit regardless 
of its implementation.  Bennett [1] showed that for power not to be 
dissipated it is necessary that the circuit be build from reversible 
gates.  Reversible circuits are of interest because of their potential 
application in low-power CMOS design, quantum computation and 
optical computing.   

Here we consider the synthesis of a reversible circuit as a 
composition of reversible logic gates.  We do not elaborate on 
technology issues but do make the following assumptions: (i) fan-
out is not permitted; (ii) loops are not permitted; and (iii) 
permutation of connections between gates is permitted. We 
consider the use of NOT, Feynman [3], Toffoli [15] and Fredkin 
[4] gates. The primary interest in this paper is to explore the use of 
Rademacher-Walsh spectral techniques [5][14], which are known 
to be quite good at disclosing exclusive-OR structures. 

Synthesis of reversible logic is significantly different from 
conventional logic synthesis. Since loops are not permitted, a 
reversible logic circuit can be specified as a simple sequence of 
gates. Further since fan-out is not permitted, and assuming an 
appropriate technology, a reversible logic circuit can realize the 
inverse specification simply by applying the gates in the reverse 
order.  Hence, synthesis can be carried out from the inputs toward 
the outputs or from the outputs toward the inputs.  Indeed, as will 
be shown by example, it is advantageous to synthesize a circuit in 
both directions and take the simpler result. 

2. PRELIMINARIES 
2.1 Reversible Logic Gates 

A reversible logic gate is a k-input, k-output (denoted k*k) device 
that maps each possible input pattern to a unique output pattern.  
For the gates considered, not only is the circuit reversible, the 
forward and reverse mappings are identical.  Many reversible logic 
gates have been studied in the literature [2][3][4] [7][9][11][15]. 
Table 1 defines the gates considered here. 

Gate Type Functionality Gate Notation 

1*1 Not x x′ =  NOT(x) 

2*2 Feynman [3] x x
y x y
′ =
′ = ⊕

 
FEY(x,y) 

3*3 Toffoli [15] x x
y y
z xy z

′ =
′ =
′ = ⊕

 
TOF3(x,y,z) 

4*4 Toffoli [15] w w
x x
y y
z wxy z

′ =
′ =
′ =
′ = ⊕

 

TOF4(w,x,y,z) 

3*3 Fredkin [4] x x
y xy xz
z xz xy

′ =
′ = ⊕
′ = ⊕

 
FRE(x,y,z) 

Table 1: Reversible Logic Gates 

The bi-directional nature of these gates is emphasized by using 
conventional quantum logic notation [10] where the same labels 
are used on both sides of the gate.  One can readily verify each of 
these gates is reversible. Feynman and Toffoli gates transform a 
single variable while the Fredkin gate transform a pair 

The obvious transformations apply regarding NOT and FEY.  
Futher: 

 FRE( , , ) FEY( , )TOF3( , , )FEY( , )x y z y z x z y y z=  (1) 

 TOF3( , , ) FEY( , )FRE( , , )FEY( , )x y z z y x z y z y=  (2) 

      TOF4( , , , ) TOF3( , , ) TOF3( , , )w x y z w x e y e z=  (3) 



wheree is a constant 0 on the input side.  The operations on the 
right-hand sides are applied in the order given. 

2.2  Rademacher-Walsh Spectral Domain 

A completely-specified Boolean function 1f( ... )nx x is defined by a 
column vector of 2n 0’s and 1’s denoted .F  The Rademacher-
Walsh spectrum [5] of the function is given by 

 n=R T F  (4) 

where the transform matrix nT is a Hadamard matrix defined as 
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Taking +1 as logic 0 and –1 as logic 1, each row of the transform 
matrix can be seen to correspond to the truth vector of the 
exclusive-OR (EXOR) of a subset of 1 2, ... nx x x . Each spectral 
coefficient thus measures the correlation of F to a particular 
EXOR function and the spectral coefficients are identified by 
subscripts indicating the variables involved, e.g. for 3n = , 

 0 1 2 1,2 3 1,3 2,3 1,2,3r r r r r r r r =   R  (6) 

0r  denotes the EXOR of no variables, i.e. the constant 0 function 
and can be seen to simply count the number of 1’s in .F  All the 
other coefficients take values in the range 12n−− denoting perfect 
agreement with the corresponding EXOR function and 

12n−+ denoting perfect agreement with the complement of that 
EXOR function.  

Linear input translation [5] and linearization [6] have been studied 
in the spectral domain.  They are implemented suing EXOR 
operations in Feynman gate structures. 

Consider two functions, f and g with spectra fR and g,R  
respectively. Boolean operations can be performed directly in the 
spectral domain [5] as shown in Table 1.  Using these rules, we can 
perform the computations for the gates in Table 1 directly in the 
spectral domain. 

NOT f f f f
0 02 ; 0n

v vr r r r v= − = − ∀ ≠  

AND 
2 1

gfg f

0

n

v v v u
u

r r r v
−

⊕
=

= × ∀∑ (v u⊕ is bit-wise ⊕ ) 

OR f g f g fg+ = + −R R R R  

EXOR f g f g fg2⊕ = + −R R R R  

Table 2 Logic Computations in the Spectral Domain 

2.3 Function Complexity 

One simple measure of function complexity is a count of the 
number of adjacent 0’s and adjacent 1’s on its Karnaugh map [6].  
It has been shown [5], that this count is given by 
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where v is the number of 1’s in the binary expansion of .v   

( ),NZ R  the number of zero coefficients in ,R  is a simple 
measure of the complexity of the spectrum of a function but is not 
a direct measure of function complexity since all EXOR functions, 
including single variables and their complements, have two 
nonzero coefficients.  However, all such functions are equivalent 
under linear translation, and hence amenable to implementation 
using Feynman gates, so ( )NZ R is of interest. 

In the synthesis method described below, we use the complexity 
metric 

 ( ) ( ) ( )f 2 fnD n NZ C= +R  (8) 

( )fD gives a higher value the fewer the number of nonzero 
spectral coefficients, and when that measure is equal, to functions 
with higher adjacency count.  Single variables and their 
complements yield the maximum value of ( )fD for a given 
n although they are not unique in that regard. 

3. SYNTHESIS METHOD 
Given a reversible logic specification expressed as a system of 
Boolean functions ( )1 2f , ,..., ,1i nx x x i n≤ ≤ , our method 
first transforms each function to the spectral domain giving the 
spectra ,1 .i i n≤ ≤R   

The core of our method is the following procedure which identifies 
a single Feynman gate, or a single Toffoli gate possibly with NOT 
gates applied to certain inputs.  Computations are carried out in the 
spectral domain using the rules in Table 2. 

Procedure 

Input: Spectra ,1i i n≤ ≤R . 

Output: One Feynman gate, or one Toffoli gate (possibly with 
input NOT gates), and transformed spectra ,1i i n′ ≤ ≤R . 

Process:  

(a) Examine the effect of each of the ( 1)n n − possible FEY(x,y) 
gates and select the gate that results in the maximum positive 
change in (f )iD for the variable it affects. 

(b) If no gate is identified in (a), examine the effect of each of the 
( 1)( 2)/2n n n− −  possible TOF3(x,y,z) gates each with the 

four possible negation patterns for x,y and select the gate and 



negation pattern that results in the maximum positive change in 
(f )iD for the variable it affects. 

(c) If no gate is identified in (b), examine the effect of each of the 
( 1)( 2)( 3)/6n n n n− − −  possible TOF4(w,x,y,z) gates each 

with the eight possible negation patterns for w,x,y and select the 
gate and negation pattern that results in the maximum positive 
change in (f )iD for the variable it affects. 

(d) If no gate is identified in (c), the procedure terminates in error.  
Otherwise, , ,j j j i′ = ≠R R where ix is the variable affected by 

the selected gate.  i′R is computed based on the gate. 

The above procedure is applied iteratively until the problem has 
been reduced to a set of n spectra each representing a unique 
variable or its complement.  Each complemented variable requires 
a NOT gate be applied.  The final result is a sequence of reversible 
logic gates which when applied in order transforms each of the 
initial n spectra to the spectrum of a unique variable.  The method 
thus synthesizes the circuit from the outputs back to the inputs.  No 
back-tracking is employed.  As a final step, Fredkin gates can be 
inserted by applying (1). 

Step (a) in the above procedure is in fact single gate linearization 
as applied in the two-place decomposition method described in 
[16] [17].  The search process described can thus be replaced by a 
direct selection based upon spectral coefficient values.  We are 
currently investigating spectral conditions that could similarly 
replace the search process in steps (b) and (c). 

4. EXAMPLES 

For each example, the specification is given as an ordered set of 
decimal numbers which define the truth table specification of the 
reversible logic problem to be realized.  To illustrate, the 
specification for Example 1 defines a Fredkin gate as specified in 
Table 3.  The circuit is given as an ordered sequence of reversible 
gates.  Read from left to right they transform the left side of the 
specification to the right side, and vice versa. 

Example 1: Verification of realizing a Fredkin gate using two 
Feynman gates and a Toffoli gate. 

Specification: [0,1,2,3,4,6,5,7] (corresponds to Table 3) 

Circuit: FEY(b,c) TOF3(a,c,b) FEY(b,c) 
 

a b c a’b’c’ 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 1 0 0 1 0 
0 1 1 0 1 1 
1 0 0 1 0 0 
1 0 1 1 1 0 
1 1 0 1 0 1 
1 1 1 1 1 1 

Table 3 Fredkin Gate Specification 
 

Example 2: A second example of the interchange of two positions 
in the specification.  Note the analogous structure to that of the 
Fredkin gate realization.  The right two Feynman gates can be 
exchanged which better shows the expected symmetry of the 
solution.  After that, the circuit given by our method is identical to 
a solution provided by Perkowski [12]. 

Specification: [0,1,2,4,3,5,6,7] 
Circuit: FEY(a,c) FEY(a,b) TOF3(b,c,a) FEY(a,c) FEY(a,b) 

Example 3: The four input extension of Example 2. Our method 
requires a TOF4 gate which as specified in (1) can be replaced by 
two TOF3 gates with a constant input added.  The right three FEY 
gates can be permuted to better show the symmetry. 

Specification: [0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15] 
Circuit: FEY(a,d) FEY(a,c) FEY(a,b) TOF4(b,c,d,a) FEY(a,d) 
FEY(a,c) FEY(a,b) 

Example 4: This is increment mod2n for 3.n =  

Specification: [1,2,3,4,5,6,7,0] 
Circuit: TOF3(b,c,a) NOT(c) NOT(b) FEY(c,b) 

Example 5: This is the 4 input extension of Example 4.  Note the 
generalization to the structure of the solution for the 3n =  case.  
Further extension would require higher order TOF gates, or 
realizations using multiple lower order TOF gates and constant 
inputs. 

Specification: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0] 
Circuit: TOF4(b,c,d,a) TOF3(c,d,b) NOT(d) NOT(c) FEY(d,c) 

Example 6: This example is taken from [13].  Note that the inputs 
must be assigned as specified, i.e. input a is connected to a in the 
given realization, input b is connected to d, etc.  

Specification: [3,11,2,10,0,7,1,6,15,8,14,9,13,5,12,4] 
Assign inputs (a,b,c,d) to (a,d,b,c) in the realization below: 
Synthesized circuit: NOT(d) NOT(b) TOF3(b,c,d) NOT(b) 
TOF3(a,c,d) NOT(c) TOF3(a,b,d) FEY(a,c) TOF3(b,c,a) 
FEY(b,c) FEY(a,c) FEY(a,b) 

The synthesized solution can be transformed to a simpler solution 
by substitution of a Fredkin gate. 

Transformed circuit: NOT(d) NOT(b) TOF3(b,c,d) NOT(b) 
TOF3(a,c,d) NOT(c) TOF3(a,b,d) FRE(b,c,a) FEY(b,c) 
FEY(a,b) 

Example 7: This is the inverse to the specification in Example 6.  
The realization after substitution of a Fredkin gate is simpler than 
found in the opposite direction.  This show the importance of 
applying our synthesis method to both a specification and the 
corresponding inverse (except when the specification is self-
inverse) and choosing the best of the two results. 

Specification: [4,6,2,0,15,13,7,5,9,11,3,1,14,12,10,8] 
Assign inputs (a,b,c,d) to (b,c,d,a) in the realization below: 
Synthesized circuit: NOT(c) NOT(b) NOT(a) TOF3(a,b,c) 
NOT(a) FEY(a,d) FEY(a,b) TOF3(b,d,a) FEY(a,b) 
Transformed circuit: NOT(c) NOT(b) NOT(a) TOF3(a,b,c) 
NOT(a) FEY(a,d) FRE(d,b,a) 



The solution from [13] requires 2 FEY, 1 TOF3, 1 FRE and 1 NOT 
so is quite comparable in gate count but has a longest signal path of 
4 whereas our result’s longest path is 5.   

5. NON-REVERSIBLE LOGIC 

An arbitrary combinational circuit composed of non-reversible 
gates, e.g. AND, OR gates, can be mapped to a reversible circuit 
typically with the addition of some number of constant inputs and 
‘garbage’ outputs [10]. 

We are investigating an approach that uses the two-place 
decomposition method presented in [17][16].  This method 
decomposes a specification into two-input gates.  Its particular 
advantages in this context are (i) that it makes use of spectral input 
translation, which corresponds to Feynman gates, and (ii) that it 
produces gate structures amenable to simple mapping to reversible 
gates. 

For example, for a three-input two-output full adder, the two-place 
decomposition method from [17] gives: 

t=EXOR(a,b); sum=EXOR(t,c); carry=OR(AND(a,b),AND(c,t)) 

This can be mapped to the reversible logic circuit 

TOF3(a,b,d) FEY(a,b) TOF3(b,c,d) FEY(c,b) 

where d=0 on input, b is the sum on output, and d is the carry on 
output, which is the solution given in [13].  This circuit has one 
constant input and two ‘garbage’ outputs which are however basic 
inputs. 

Not all circuits are so amenable to this mapping method.  One 
approach is to find a reversible circuit in this manner, use it to 
generate a reversible specification, and then apply the synthesis 
method above in the hopes of improving the circuit.  This does not 
always lead to improvement.  For example, applying this to the full 
adder example leads to the realization 

TOF3(b,c,d) TOF3(a,c,d) TOF3(a,b,d) FEY(c,a) FEY(b,a) 

which is more costly than the result from mapping the two-place 
decomposition result.  Other examples, show an improvement. 

6. CONCLUSION 

Results to date show the spectral-based synthesis method does 
indeed have promise.  More investigation of the mapping of 
circuits produced by two-place decomposition and the overall 
utility of that approach is required. 

The preliminary implementation of the reversible logic synthesis 
method is in C and represents functions and their spectra as vectors 
of length 2n although fast transform methods are used in the 
implementation rather than the matrix transformation method.  
Execution time on a PC is negligible for the examples shown.  A 
decision diagram implementation is under development so the 
method can be applied to larger problems. 

While our synthesis method does not require extensive look-ahead 
or back-tracking techniques, it does require the full consideration 
of the possible Toffoli gates at each stage of the synthesis.  As 
noted above, we are currently investigating spectral conditions to 
eliminate such searching,. Finally, we are investigating in more 
depth the use of two-place decomposition techniques in the 
synthesis of reversible implementations for non-reversible 
specifications. 
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