
Spectral and Two-Place Decomposition
Techniques in Reversible Logic

D. Michael Miller

Department of Computer Science
University of Victoria

Victoria, BC, Canada V8w 3P6
mmiller@csr.uvic.ca

ABSTRACT
A digital circuit is reversible if it maps each input vector into a
unique output vector. Reversible circuits can lead to low-power
CMOS implementations and are also of interest in optical and
quantum computing. In this paper, we consider the synthesis of
reversible logic assuming primitive reversible devices such as
Feynman, Toffoli and Fredkin gates. In particular, we consider the
use of Rademacher-Walsh spectral techniques and two-place
decompositions of Boolean functions. Preliminary results are
given for reversible and nonreversible functions and show that the
approaches described do indeed show promise.

1. INTRODUCTION

A digital circuit is reversible if it maps each input pattern to a
unique output pattern. Landauer [8] proved that traditional
irreversible gates lead to power dissipation in a circuit regardless
of its implementation. Bennett [1] showed that for power not to be
dissipated it is necessary that the circuit be build from reversible
gates. Reversible circuits are of interest because of their potential
application in low-power CMOS design, quantum computation and
optical computing.

Here we consider the synthesis of a reversible circuit as a
composition of reversible logic gates. We do not elaborate on
technology issues but do make the following assumptions: (i) fan-
out is not permitted; (ii) loops are not permitted; and (iii)
permutation of connections between gates is permitted. We
consider the use of NOT, Feynman [3], Toffoli [15] and Fredkin
[4] gates. The primary interest in this paper is to explore the use of
Rademacher-Walsh spectral techniques [5][14], which are known
to be quite good at disclosing exclusive-OR structures.

Synthesis of reversible logic is significantly different from
conventional logic synthesis. Since loops are not permitted, a
reversible logic circuit can be specified as a simple sequence of
gates. Further since fan-out is not permitted, and assuming an
appropriate technology, a reversible logic circuit can realize the
inverse specification simply by applying the gates in the reverse
order. Hence, synthesis can be carried out from the inputs toward
the outputs or from the outputs toward the inputs. Indeed, as will
be shown by example, it is advantageous to synthesize a circuit in
both directions and take the simpler result.

2. PRELIMINARIES
2.1 Reversible Logic Gates

A reversible logic gate is a k-input, k-output (denoted k*k) device
that maps each possible input pattern to a unique output pattern.
For the gates considered, not only is the circuit reversible, the
forward and reverse mappings are identical. Many reversible logic
gates have been studied in the literature [2][3][4] [7][9][11][15].
Table 1 defines the gates considered here.

Gate Type Functionality Gate Notation

1*1 Not x x′ = NOT(x)

2*2 Feynman [3] x x
y x y
′ =
′ = ⊕

FEY(x,y)

3*3 Toffoli [15] x x
y y
z xy z

′ =
′ =
′ = ⊕

TOF3(x,y,z)

4*4 Toffoli [15] w w
x x
y y
z wxy z

′ =
′ =
′ =
′ = ⊕

TOF4(w,x,y,z)

3*3 Fredkin [4] x x
y xy xz
z xz xy

′ =
′ = ⊕
′ = ⊕

FRE(x,y,z)

Table 1: Reversible Logic Gates

The bi-directional nature of these gates is emphasized by using
conventional quantum logic notation [10] where the same labels
are used on both sides of the gate. One can readily verify each of
these gates is reversible. Feynman and Toffoli gates transform a
single variable while the Fredkin gate transform a pair

The obvious transformations apply regarding NOT and FEY.
Futher:

 FRE(, ,) FEY(,)TOF3(, ,)FEY(,)x y z y z x z y y z= (1)

 TOF3(, ,) FEY(,)FRE(, ,)FEY(,)x y z z y x z y z y= (2)

 TOF4(, , ,) TOF3(, ,) TOF3(, ,)w x y z w x e y e z= (3)

wheree is a constant 0 on the input side. The operations on the
right-hand sides are applied in the order given.

2.2 Rademacher-Walsh Spectral Domain

A completely-specified Boolean function 1f(...)nx x is defined by a
column vector of 2n 0’s and 1’s denoted .F The Rademacher-
Walsh spectrum [5] of the function is given by

 n=R T F (4)

where the transform matrix nT is a Hadamard matrix defined as

[]0

1 1

1 1

1
p p

p
p p

− −

− −

=

 
 =  −  

T

T T
T

T T

 (5)

Taking +1 as logic 0 and –1 as logic 1, each row of the transform
matrix can be seen to correspond to the truth vector of the
exclusive-OR (EXOR) of a subset of 1 2, ... nx x x . Each spectral
coefficient thus measures the correlation of F to a particular
EXOR function and the spectral coefficients are identified by
subscripts indicating the variables involved, e.g. for 3n = ,

 0 1 2 1,2 3 1,3 2,3 1,2,3r r r r r r r r =   R (6)

0r denotes the EXOR of no variables, i.e. the constant 0 function
and can be seen to simply count the number of 1’s in .F All the
other coefficients take values in the range 12n−− denoting perfect
agreement with the corresponding EXOR function and

12n−+ denoting perfect agreement with the complement of that
EXOR function.

Linear input translation [5] and linearization [6] have been studied
in the spectral domain. They are implemented suing EXOR
operations in Feynman gate structures.

Consider two functions, f and g with spectra fR and g,R
respectively. Boolean operations can be performed directly in the
spectral domain [5] as shown in Table 1. Using these rules, we can
perform the computations for the gates in Table 1 directly in the
spectral domain.

NOT f f f f
0 02 ; 0n

v vr r r r v= − = − ∀ ≠

AND
2 1

gfg f

0

n

v v v u
u

r r r v
−

⊕
=

= × ∀∑ (v u⊕ is bit-wise ⊕)

OR f g f g fg+ = + −R R R R

EXOR f g f g fg2⊕ = + −R R R R

Table 2 Logic Computations in the Spectral Domain

2.3 Function Complexity

One simple measure of function complexity is a count of the
number of adjacent 0’s and adjacent 1’s on its Karnaugh map [6].
It has been shown [5], that this count is given by

 ()
2 1

2
2

0

1 1
f 2

2 2

n

n
vn

v
C n v

−

−
=

  = −   
∑ r (7)

where v is the number of 1’s in the binary expansion of .v

(),NZ R the number of zero coefficients in ,R is a simple
measure of the complexity of the spectrum of a function but is not
a direct measure of function complexity since all EXOR functions,
including single variables and their complements, have two
nonzero coefficients. However, all such functions are equivalent
under linear translation, and hence amenable to implementation
using Feynman gates, so ()NZ R is of interest.

In the synthesis method described below, we use the complexity
metric

 () () ()f 2 fnD n NZ C= +R (8)

()fD gives a higher value the fewer the number of nonzero
spectral coefficients, and when that measure is equal, to functions
with higher adjacency count. Single variables and their
complements yield the maximum value of ()fD for a given
n although they are not unique in that regard.

3. SYNTHESIS METHOD
Given a reversible logic specification expressed as a system of
Boolean functions ()1 2f , ,..., ,1i nx x x i n≤ ≤ , our method
first transforms each function to the spectral domain giving the
spectra ,1 .i i n≤ ≤R

The core of our method is the following procedure which identifies
a single Feynman gate, or a single Toffoli gate possibly with NOT
gates applied to certain inputs. Computations are carried out in the
spectral domain using the rules in Table 2.

Procedure

Input: Spectra ,1i i n≤ ≤R .

Output: One Feynman gate, or one Toffoli gate (possibly with
input NOT gates), and transformed spectra ,1i i n′ ≤ ≤R .

Process:

(a) Examine the effect of each of the (1)n n − possible FEY(x,y)
gates and select the gate that results in the maximum positive
change in (f)iD for the variable it affects.

(b) If no gate is identified in (a), examine the effect of each of the
(1)(2)/2n n n− − possible TOF3(x,y,z) gates each with the

four possible negation patterns for x,y and select the gate and

negation pattern that results in the maximum positive change in
(f)iD for the variable it affects.

(c) If no gate is identified in (b), examine the effect of each of the
(1)(2)(3)/6n n n n− − − possible TOF4(w,x,y,z) gates each

with the eight possible negation patterns for w,x,y and select the
gate and negation pattern that results in the maximum positive
change in (f)iD for the variable it affects.

(d) If no gate is identified in (c), the procedure terminates in error.
Otherwise, , ,j j j i′ = ≠R R where ix is the variable affected by

the selected gate. i′R is computed based on the gate.

The above procedure is applied iteratively until the problem has
been reduced to a set of n spectra each representing a unique
variable or its complement. Each complemented variable requires
a NOT gate be applied. The final result is a sequence of reversible
logic gates which when applied in order transforms each of the
initial n spectra to the spectrum of a unique variable. The method
thus synthesizes the circuit from the outputs back to the inputs. No
back-tracking is employed. As a final step, Fredkin gates can be
inserted by applying (1).

Step (a) in the above procedure is in fact single gate linearization
as applied in the two-place decomposition method described in
[16] [17]. The search process described can thus be replaced by a
direct selection based upon spectral coefficient values. We are
currently investigating spectral conditions that could similarly
replace the search process in steps (b) and (c).

4. EXAMPLES

For each example, the specification is given as an ordered set of
decimal numbers which define the truth table specification of the
reversible logic problem to be realized. To illustrate, the
specification for Example 1 defines a Fredkin gate as specified in
Table 3. The circuit is given as an ordered sequence of reversible
gates. Read from left to right they transform the left side of the
specification to the right side, and vice versa.

Example 1: Verification of realizing a Fredkin gate using two
Feynman gates and a Toffoli gate.

Specification: [0,1,2,3,4,6,5,7] (corresponds to Table 3)

Circuit: FEY(b,c) TOF3(a,c,b) FEY(b,c)

a b c a’b’c’
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Table 3 Fredkin Gate Specification

Example 2: A second example of the interchange of two positions
in the specification. Note the analogous structure to that of the
Fredkin gate realization. The right two Feynman gates can be
exchanged which better shows the expected symmetry of the
solution. After that, the circuit given by our method is identical to
a solution provided by Perkowski [12].

Specification: [0,1,2,4,3,5,6,7]
Circuit: FEY(a,c) FEY(a,b) TOF3(b,c,a) FEY(a,c) FEY(a,b)

Example 3: The four input extension of Example 2. Our method
requires a TOF4 gate which as specified in (1) can be replaced by
two TOF3 gates with a constant input added. The right three FEY
gates can be permuted to better show the symmetry.

Specification: [0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15]
Circuit: FEY(a,d) FEY(a,c) FEY(a,b) TOF4(b,c,d,a) FEY(a,d)
FEY(a,c) FEY(a,b)

Example 4: This is increment mod2n for 3.n =

Specification: [1,2,3,4,5,6,7,0]
Circuit: TOF3(b,c,a) NOT(c) NOT(b) FEY(c,b)

Example 5: This is the 4 input extension of Example 4. Note the
generalization to the structure of the solution for the 3n = case.
Further extension would require higher order TOF gates, or
realizations using multiple lower order TOF gates and constant
inputs.

Specification: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0]
Circuit: TOF4(b,c,d,a) TOF3(c,d,b) NOT(d) NOT(c) FEY(d,c)

Example 6: This example is taken from [13]. Note that the inputs
must be assigned as specified, i.e. input a is connected to a in the
given realization, input b is connected to d, etc.

Specification: [3,11,2,10,0,7,1,6,15,8,14,9,13,5,12,4]
Assign inputs (a,b,c,d) to (a,d,b,c) in the realization below:
Synthesized circuit: NOT(d) NOT(b) TOF3(b,c,d) NOT(b)
TOF3(a,c,d) NOT(c) TOF3(a,b,d) FEY(a,c) TOF3(b,c,a)
FEY(b,c) FEY(a,c) FEY(a,b)

The synthesized solution can be transformed to a simpler solution
by substitution of a Fredkin gate.

Transformed circuit: NOT(d) NOT(b) TOF3(b,c,d) NOT(b)
TOF3(a,c,d) NOT(c) TOF3(a,b,d) FRE(b,c,a) FEY(b,c)
FEY(a,b)

Example 7: This is the inverse to the specification in Example 6.
The realization after substitution of a Fredkin gate is simpler than
found in the opposite direction. This show the importance of
applying our synthesis method to both a specification and the
corresponding inverse (except when the specification is self-
inverse) and choosing the best of the two results.

Specification: [4,6,2,0,15,13,7,5,9,11,3,1,14,12,10,8]
Assign inputs (a,b,c,d) to (b,c,d,a) in the realization below:
Synthesized circuit: NOT(c) NOT(b) NOT(a) TOF3(a,b,c)
NOT(a) FEY(a,d) FEY(a,b) TOF3(b,d,a) FEY(a,b)
Transformed circuit: NOT(c) NOT(b) NOT(a) TOF3(a,b,c)
NOT(a) FEY(a,d) FRE(d,b,a)

The solution from [13] requires 2 FEY, 1 TOF3, 1 FRE and 1 NOT
so is quite comparable in gate count but has a longest signal path of
4 whereas our result’s longest path is 5.

5. NON-REVERSIBLE LOGIC

An arbitrary combinational circuit composed of non-reversible
gates, e.g. AND, OR gates, can be mapped to a reversible circuit
typically with the addition of some number of constant inputs and
‘garbage’ outputs [10].

We are investigating an approach that uses the two-place
decomposition method presented in [17][16]. This method
decomposes a specification into two-input gates. Its particular
advantages in this context are (i) that it makes use of spectral input
translation, which corresponds to Feynman gates, and (ii) that it
produces gate structures amenable to simple mapping to reversible
gates.

For example, for a three-input two-output full adder, the two-place
decomposition method from [17] gives:

t=EXOR(a,b); sum=EXOR(t,c); carry=OR(AND(a,b),AND(c,t))

This can be mapped to the reversible logic circuit

TOF3(a,b,d) FEY(a,b) TOF3(b,c,d) FEY(c,b)

where d=0 on input, b is the sum on output, and d is the carry on
output, which is the solution given in [13]. This circuit has one
constant input and two ‘garbage’ outputs which are however basic
inputs.

Not all circuits are so amenable to this mapping method. One
approach is to find a reversible circuit in this manner, use it to
generate a reversible specification, and then apply the synthesis
method above in the hopes of improving the circuit. This does not
always lead to improvement. For example, applying this to the full
adder example leads to the realization

TOF3(b,c,d) TOF3(a,c,d) TOF3(a,b,d) FEY(c,a) FEY(b,a)

which is more costly than the result from mapping the two-place
decomposition result. Other examples, show an improvement.

6. CONCLUSION

Results to date show the spectral-based synthesis method does
indeed have promise. More investigation of the mapping of
circuits produced by two-place decomposition and the overall
utility of that approach is required.

The preliminary implementation of the reversible logic synthesis
method is in C and represents functions and their spectra as vectors
of length 2n although fast transform methods are used in the
implementation rather than the matrix transformation method.
Execution time on a PC is negligible for the examples shown. A
decision diagram implementation is under development so the
method can be applied to larger problems.

While our synthesis method does not require extensive look-ahead
or back-tracking techniques, it does require the full consideration
of the possible Toffoli gates at each stage of the synthesis. As
noted above, we are currently investigating spectral conditions to
eliminate such searching,. Finally, we are investigating in more
depth the use of two-place decomposition techniques in the
synthesis of reversible implementations for non-reversible
specifications.

REFERENCES
[1] Bennett, C., “Logical Reversibility of Computation,” IBM

Jour. of Research and Development, 17, 1973, pp. 525-532.
[2] De Vos, A., “Towards Reversible Digital Computers,” Proc.

European Conf. Circuit Theory & Design, 1997, pp. 923-931.
[3] Feynman, R., “Quantum Mechanical Computers,” Optics

News,11, 1985, pp. 11-20.
[4] Fredkin, E., and T. Toffoli, “Conservative Logic,”

International Jour. Theoretical Physics, 1982, pp. 219-253.
[5] Hurst, S. L., D. M. Miller, and J. C. Muzio, Spectral

Techniques in Digital Logic, Academic Press, 1985.
[6] Karpovsky, M. G., Finite Orthogonal Series in the Design of

Digital Devices, John Wiley and Sons, 1976.
[7] Kerntopf, P., “On Efficiency of Reversible Logic (3,3)

Gates,” Proc. 7th Intl. Conf. MIXDES, 2000, pp. 185-190.
[8] Landauer, R., “Irreversibility and Heat Generation in the

Computational Process,” IBM Journal of Research and
Development, 5, 1961, pp. 183-191.

[9] Margolus, N., Physics and Computation, Ph. D. Thesis,
Massachusetts Institute of Technology, 1988.

[10] Nielsen, M. A., and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

[11] Peres, A., “Reversible Logic and Quantum Computers,”
Physical Review A, 32, 1985, pp. 3266-3276.

[12] Perkowski, M. Private communication.
[13] Perkowski, M., et al., “A General Decomposition for

Reversible Logic,” Proc. Fifth Reed-Muller Workshop, 2001,
pp. 119-138.

[14] Thornton, M. A., R. Drechsler and D. M. Miller, Spectral
Techniques in VLSI CAD, Kluwer, 2002.

[15] Toffoli, T., “Reversible Computing,” in Automata, Languages
and Programming, Springer-Verlag, pp. 632-644, 1980.

[16] Tomczuk, R., and D. M. Miller, “Combinational Logic
Synthesis by Two-Place Decomposition and Auto-correlation
Techniques,” Proceedings Canadian Conference on VLSI,
1992, pp. 139-146.

[17] Tomczuk, R., Autocorrelation and Decomposition Methods in
Combinational Logic Design, Ph.D. Dissertation, University
of Victoria, 1996.

Acknowledgements: This work was supported in part by Natural
Sciences and Engineering Research Council of Canada Research
Grant 39409-96. Discussions and e-mail exchanges with Prof.
Marek Perkowski, Portland State University, regarding reversible
logic synthesis are gratefully acknowledged.

