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Abstract

A breadth-first search method for determining optimal 3-qubit circuits composed of quantum NOT, CNOT,

controlled-V and controlled-V+ (NCV) gates is introduced. Results are presented for simple gate count and

for technology motivated cost metrics. The optimal NCV circuits are also compared to NCV circuits derived

from optimal NOT, CNOT and Toffoli (NCT) gate circuits. The work presented here provides basic results and

motivation for continued study of the direct synthesis of NCV circuits, and establishes relations between function

realizations in different circuit cost metrics.

1 Introduction

Reversible and quantum logic synthesis have attracted recent attention as a result of advances in quantum and nano

technologies. Many of the proposed synthesis methods, especially in the area of reversible logic synthesis, assume

large gate libraries where implementation costs of the gates may vary significantly. However, these methods most

often target minimization of the gate count. Use of such a circuit cost metric is likely to result in seemingly small

circuits, which are in fact expensive to construct.

The synthesis of circuits composed of NOT, CNOT and Toffoli (NCT) gates [18] and multiple control Toffoli

gates [1, 5, 10, 11, 20] has recently been extensively studied. Converting an NCT or a multiple control Toffoli gate

circuit into one composed of NOT, CNOT, controlled-V and controlled-V + (NCV) gates has also been considered
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[2, 9]. Further simplification of NCV circuits has also been well studied [9].

It is an important question how close the circuits found by the above approaches are to optimal. The direct

synthesis of NCV circuits is also of considerable interest since intuitively one would expect direct synthesis to

produce better results than the indirect route via NCT circuits. Finally, we note that observing optimal circuits for

small cases often will shed light on good (if not optimal) synthesis approaches applicable to larger problems.

For these reasons, we here present an approach to finding optimal 3-qubit NCV circuits using various cost

metrics. We compare these results to those found by mapping optimal NCT circuits to NCV circuits. The advantage

of direct NCV synthesis will be clear even for the 3-qubit case. Also, the results clearly demonstrate the difference

between using simple gate count and technology motivated cost metrics.

The necessary background is reviewed in Section 2. A breadth-first search procedure to find optimal 3-qubit

NCV circuits is given in Section 3 and properties identified in those circuits are discussed in Section 4. Section 5

presents comparative results to circuits derived from NCT circuits and for various cost metrics. Restricted qubit-

to-qubit interaction is considered in Section 6. The paper concludes with remarks and suggestions for ongoing

research in Section 7.

2 Background

We here provide a brief review of the basic concepts required for this paper. For a more detailed and formal

introduction we refer the reader to [14].

A single quantum bit (qubit) has two values, 0 or 1, traditionally depicted as |0〉 and |1〉 respectively. The state

of a single qubit is a linear combination α|0〉+ β|1〉 (also written as a vector (α,β)) in the basis {|0〉, |1〉}, where

α and β are complex numbers called the amplitudes, and |α| 2 + |β|2 = 1. Real numbers |α|2 and |β|2 represent

the probabilities (p and q) of reading the values |0〉 and |1〉 upon physical measurement of the qubit. The state

of a quantum system with n > 1 qubits is described as an element of the tensor product of the single state spaces

yielding a normalized vector of length 2n called the state vector. Quantum system evolution results in changes of

the state vector expressible as products of 2n×2n unitary matrices. This formulation characterizes a transformation

but provides no indication of its implementation cost.

In one common approach, small gates are used as elementary building blocks with unit cost [2, 3, 4, 7, 9, 14].

The commonly used gates include:

• NOT (x → x̄) gate is defined by the matrix NOT :=
(

0 1
1 0

)
.

• CNOT gate can be defined as a Boolean transformation (x,y) → (x,x⊕ y). In matrix form it is defined as
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follows

CNOT :=




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

• The 2-bit controlled-V gate is defined by the matrix

controlled-V :=




1 0 0 0

0 1 0 0

0 0 1+i
2

1−i
2

0 0 1−i
2

1+i
2




.

• Controlled-V+ is the inverse of controlled-V . Its matrix is the complex conjugate of the matrix for controlled-

V .

Controlled-V and controlled-V + are also referred to as controlled-sqrt-of-NOTgates since squaring each matrix

gives the matrix representation of the CNOT gate. In order to implement a Boolean specification, and assuming

an auxiliary qubit is available in addition to the minimal set of qubits needed for reversibility [8], the set of gates

NOT, CNOT, controlled-V and controlled-V + is complete [14, 18]. We call this set the NCV gates.

Definition 1. The NCV-111 cost of a circuit composed of NCV gates is the number of gates in the circuit.

In an alternative approach [12, 17], it is observed that any circuit can be composed with single qubit and CNOT

gates and the circuit cost is calculated based on the number of CNOT gates required.

With regards to the NCV library, we next define NCV-012 cost and motivate our definition by the fact that

controlled-V and controlled-V + gates require at most 2 CNOT gates when decomposed into a circuit with single

qubit and CNOT gates ([14], page 181).

Definition 2. The NCV-012 cost of an NCV circuit is linear with weights 0, 1, 2, and 2 associated with the gates

NOT, CNOT, controlled-V and controlled-V +, respectively.

The third cost metric that we consider in this paper is motivated by a recent investigation of the technological

costs of quantum and reversible primitives [3, 7] in a quantum system described by an Ising type Hamiltonian

(H = 1
2 ∑i wiσi

z + π
2 ∑i�= j Ji jσi

zσ
j
z). Assuming the Hamiltonian is in a strong-coupling regime (when time scales for

addressing a single qubit and a coupling are similar), the cost can be defined as follows:

Definition 3. The NCV-155 cost of an NCV circuit is linear with weights 1, 5, 5, and 5 associated with the gates

NOT, CNOT, controlled-V and controlled-V +, respectively.
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However, actual liquid NMR implementations [3] work in a weak-coupling regime. It is likely that using cost

metrics where gates NOT, CNOT, and controlled-V (controlled-V +) have costs 1, 3 + x and 3 + x
2 for values of x

close to or more than 10 would be appropriate in this case. This is because rotations in the x− y plane require

pulsing; z-rotations are free (equivalent to changing the rotating reference frame); the zz-coupling operational time

is typically greater, on an order of magnitude, than addressing a single qubit; and controlled-V (controlled-V +)

gates use zz interaction half the time of CNOT [3, 7]. Actual timings of the gates will strongly depend upon the

chemical properties of the particular molecule chosen for computation [3, 6, 13]. All costs we define here are thus

generic.

The approach discussed in this paper is not restricted to the cost metrics we have chosen for illustrative pur-

poses. The search method for example is directly applicable to any cost metric where the cost of a gate is context-

free, i.e. the cost does not depend on the neighboring gates. It could be adapted to a context-sensitive situation,

but we have not yet pursued that. Doing so would significantly complicate and likely slow the search substantially

as circuit cost could potentially decrease when a gate is added. Indeed, convergence could only be guaranteed if

there is some restriction on when the addition of gates would reduce circuit cost.

Finally, we define the multiple control Toffoli gate [19].

Definition 4. For the set of Boolean variables {x1,x2, ..., xn} the Toffoli gate has the form TOF(C;T ), where

C = {xi1 ,xi2 , ...,xik}, T = {x j} and C∩T = /0. It maps each Boolean pattern (x+
1 ,x+

2 , ...,x+
n ) to (x+

1 ,x+
2 , ...,x+

j−1,

x+
j ⊕ x+

i1
x+

i2
...x+

ik
,x+

j+1, ...,x
+
n ). C will be called the control set and T , which always contains a single element, will

be called the target.

The Toffoli gate and its generalizations with more than two controls form a good basis for synthesis purposes

and have been used by many authors [1, 5, 10, 11, 20]. However, in quantum technologies, Toffoli gates are not

simple entities [14, 3]. Rather they are composite gates themselves and Toffoli gates with a large set of controls

can be quite expensive [2, 9]. As a result, the NCV-111 cost of a 100-gate Toffoli circuit with 10 input/output

qubits can be as low as 100, or may be as high as 15,200. These are, of course, extreme numbers. In Section 5, we

show a better analysis of how the costs may differ.

Circuit diagrams are drawn in the popular fashion as used in [14]. Horizontal “wires” represent a single qubit

each; the time in the circuit diagrams is propagated from left to right; gate controls are depicted with •; targets

appear as ⊕ for NOT and CNOT gates, V for controlled-V gate, and V+ for controlled-V + gate with vertical

lines joining the control(s) of a gate to its target.
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3 The Search Procedure

Our main tool for the investigation of the relations amongst the NCV cost metrics considered and their relation to

the most commonly used reversible circuit cost metric, multiple control Toffoli gate count, is a search procedure for

the optimal synthesis of NCV circuits for all 40,320 3-variable reversible Boolean functions. For this problem, we

use a prioritized, pruned breadth-first search and restrict the set of possible circuits. This is because the search tree

for simple full breadth-first search grows too fast for a search to be accomplished in feasible time and space. This

is in contrast to using a full breadth-first search for NCT optimal synthesis [18], which is tractable for 3 variable

circuits with no search optimizations.

To see the size of the problem, note that the number of base transformations for NCV gates is 21: 3 trans-

formations involve a NOT gate, and the use of the gates CNOT, controlled-V and controlled-V + each result in 6

transformations. The results in Table 2 show that the length of the optimal implementations can be up to 16. Thus,

the number of nodes at one level of the search tree can be as high as 21 16 ≈ 1.4∗ 1021.

Breadth-first search was previously applied to the synthesis of optimal circuits for the size 3 reversible functions

using the NOT, CNOT, and Toffoli gate library [18]. The size of the bottom level of their search tree (branching

factor to the power of tree depth) is 98 ≈ 4.3∗ 107 showing that such a search is significantly simpler than the one

we are pursuing and requires no techniques to reduce the search space or make the search efficient. In addition, in

quantum technologies, Toffoli gates are not simple transformations [14], while synthesis of optimal circuits makes

more sense in terms of simple transformations. Our search procedure can find optimal circuits in any weighted

gate count metric, not just in the simple gate count metric used in [18]. The authors of [18] do not discuss synthesis

of optimal circuits in weighted bases, and we thus assume this was not done.

An earlier attempt to synthesize optimal NCV circuits [21] was capable of synthesizing optimal implemen-

tations of maximal cost 7 counting only CNOT, and controlled-sqrt-of-NOT gates. The maximum number of

synthesized functions was 10,136 [21], which is about a quarter of all 3-variable reversible functions. Our program

synthesizes optimal implementations for all 40,320 3-variable reversible functions, and is not tied to a specific cost

metric. Further, our search procedure is significantly faster: it completes the entire search in less time than the

search of all optimal 5-gate implementations in [21].

In [4], the synthesis of some small optimal quantum circuits composed of NCV gates is discussed. The largest

3-variable function synthesized (the so-called Miller gate) has a 6 gate optimal implementation. The reported

runtime for the synthesis of this circuit is 318.29 seconds. Hence, the method in [4] cannot synthesize all 3-

variable reversible functions in practical time, unlike our approach which requires on the order of one minute for

the synthesis optimal circuits for all 40,320 3-variable reversible functions.
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In our work, we do not allow a quantum gate (controlled-V and controlled-V +) to have a control qubit that at

that point in the circuit takes a quantum (non-Boolean) value. We do not have a mathematical proof that deleting

this restriction will not result in construction of smaller circuits. However, numerous experiments indicate that use

of a quantum gate with a quantum control qubit does not lead to a more efficient circuit than the one we construct.

The above restriction cuts down the search tree and allows us to work with quaternary logic instead of continuous

values.

The techniques we have used to reduce the size of the search include:

• Based on the observation above, we can view a quantum function as a base reversible Boolean function plus

a quantum signature. In other words, each of the values that may occur in the truth table is stored as a 2-bit

number. The values are |0〉, |1〉, 1+i
2 |0〉+ 1−i

2 |1〉 and 1−i
2 |0〉+ 1+i

2 |1〉 which are represented by the patterns

00, 10, 01 and 11, respectively. 1+i
2 |0〉+ 1−i

2 |1〉 is the result of applying a controlled-V gate with control

value |1〉 to a qubit in state |0〉 and the result of applying a controlled-V + gate with control value |1〉 to a

qubit in state |1〉. 1−i
2 |0〉+ 1+i

2 |1〉 is the result of applying a controlled-V gate with control equal |1〉 to a

qubit in state |1〉 and the result of the application of a controlled-V + gate with control equal |1〉 to a qubit in

state |0〉.

If every qubit of a 3-qubit quantum function is written using the above encoding, it can be noticed that the

set of first bits (24 bits arranged in a 3×8 table) forms a truth table for a reversible specification. This further

explains how gates controlled-V and controlled-V + operate and motivates our intuition behind calling the

set of first bits a reversible parent, and the set of second bits a quantum signature.

• While our final goal is to synthesize all 3-variable reversible functions, and none of the quantum (non-

Boolean) functions, the latter still have to be stored and referred to during the search process. Each such

function is stored in a queue associated with its parent reversible Boolean function. The quantum function

itself is then identified by the function’s quantum signature. Clearly, any quantum function is uniquely

defined by the parent Boolean function and its quantum signature.

• When we assign a new gate to the existing optimal cascade we never choose a gate with the same set of

controls and targets as the immediately previous one in the circuit. This is because such a sequence can

always be reduced by template application [9], and thus will not be part of an optimal circuit. This reduces

the number of gates that one must consider at each step.

• We note that in an NCV implementation of a reversible function one can interchange controlled-V with

controlled-V+ gates without changing the function realized, provided all such gates are interchanged. In our
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search procedure, this is accounted for by never using a controlled-V + gate as the first quantum gate during

construction of an NCV circuit. In this context, the first quantum gate is the one that transforms a qubit that

contains a Boolean value to a quantum value.

• Once an optimal implementation of a function is found, we have also found an optimal implementation for

all functions that differ from this one only by their input-output labeling. This accounts for up to 6 different

functions.

• If G1G2...Gk is a circuit for a reversible function f , G−1
k G−1

k−1...G
−1
1 is a valid circuit for f −1 [9]. It can be

shown that for each metric considered in this paper, as well as in any weighted linear metric, if G 1G2...Gk is

optimal for f , then G−1
k G−1

k−1...G
−1
1 will be an optimal implementation for f −1 provided each gate type and

its inverse are assigned the same cost. From the point of view of the search for optimal circuits, this means

that once an optimal circuit for f is found, so is an optimal circuit for f −1. This observation would further

help to cut down the search space, however, we have not yet implemented it since our program is fast enough

at present. It takes approximately 1 minute to synthesize optimal 3-qubit NCV circuits in each metric on a

single 750 MHz processor Sun Blade 1000.

Due to the differing costs of the basis gates, our procedure maintains several queues of functions, each cor-

responding to the cost associated with the circuits it contains. During the search, new gates are assigned to the

circuits with smallest cost not yet considered thereby yielding new circuits to be considered. Lowest cost gates are

applied first. However, due to varying gate costs, the first circuit found realizing a Boolean function may not be

optimal. To see this, consider the example in Figure 1. Our program finds the non-optimal circuit with NCV-155

cost 7 before the optimal implementation with NCV-155 cost 6. This is because the procedure generates a circuit

with two NOT gates before a circuit with a single CNOT gate, and consequently finds the three gate circuit in

advance of the cheaper two gate alternative. Note that for the simple gate count metric NCV-111 these two circuits

are generated in the opposite order.

b
c

a

(a)

b
c

a

(b)

Figure 1: (a) Non-optimal, but first found and (b) optimal in NCV-155 cost metric circuits.
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4 Observations on the optimal 3-qubit NCV circuits

Using the above search procedure we found several interesting properties of the optimal 3-qubit NCV circuits.

Optimal implementations found with cost metrics NCV-111 and NCV-155 are interchangeable, and optimal

NCV-111 implementations correspond to optimal costs in the NCV-012 cost metric. The diagram in Figure 2 shows

which optimal implementations can be substituted without loosing the property of optimality in the corresponding

metric. This means that the set of optimal NCV-111 circuits contains circuits optimal in other (NCV-012 and NCV-

155) metrics. In Section 5, we make some observations with regard to the NCV-111 metric optimal circuits. The

same comparisons apply for optimal NCV-012 and optimal NCV-155 implementations. Further, our experiments

with different metrics suggest that the set of optimal NCV-111 circuits will contain optimal implementations in

NCV-xyz cost metric as long as non-negative integer numbers x, y, and z which represent costs of the gates NOT,

CNOT, and controlled-V (and assuming the cost of the controlled-V + equals the cost of the controlled-V) satisfy

the inequality y ≤ 2z.

Optimal
NCV-111

circuit

Optimal
NCV-155

circuit

Optimal
NCV-012

circuit

Figure 2: Interchangeability of the optimal implementations.

For the cost metrics NCV-111, NCV-155, and NCV-012, the total number of controlled-V and controlled-V +

gates in any single circuit is divisible by 3 and is never more than 9. We conjecture that the overall number of

controlled-V and controlled-V + gates in any NCV implementation of any reversible function is divisible by three.

A 3-variable Toffoli gate and a 3-variable Toffoli gate with one negative control have the same cost in each

of the metrics NCV-111, NCV-155, and NCV-012. Some optimal circuits are illustrated in Figure 3. An optimal

implementation of a 3-line Toffoli gate with two negative controls has 6 gates.

This observation allows us to generalize the well known result by Barenco et al. [2] and improve on the

implementation costs of the generalized multiple controlled Toffoli gates in [8] by noting that multiple control

Toffoli gates with some, but not all, negative controls, can be implemented with the same cost as the same size

Toffoli gate with all positive controls. Figure 4 shows a Toffoli gate with 5 controls, and a circuit implementing

it, similar to the one from [2]. Since the cost of a 3-variable Toffoli gate with one negative control equals the cost

of a 3-variable Toffoli gate with two positive controls, the multiple control Toffoli gate illustrated in Figure 4 will

have a cost equal to the cost of the same size Toffoli gate having only positive controls. It turns out that further
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V V+

a
b
c V

=
(a)

V+

a
b
c V

=
(b)

V+ V+

a
b
c V

=
(c)

V+

Figure 3: (a) optimal NCV realization of the Toffoli gate (b),(c) optimal NCV realizations of the Toffoli gate with

a single negative control.

simplification of the circuits for a multiple control Toffoli gate and a multiple control Toffoli gate with some but

not all negations results in equal reductions in terms of the associated quantum gate count [9]. However, such

simplified realizations are still not guaranteed to be optimal.

=

Figure 4: Construction of a large Toffoli gate with some but not all negative controls.

Observing all optimal implementations in the NCV-111 metric we came to the conclusion that every Boolean

function f (x1,x2) of two variables can be computed by a quantum circuit with no more than 5 gates. If this function

is from Boolean class 0 (when f (0,0) = 0), only 4 quantum gates are required.

As noted above the search procedure can be applied for other cost metrics. For example, we have synthesized

optimal circuits assuming a weak coupling computational mode as would be supported by liquid NMR technol-

ogy with the qubit-to-qubit interaction strength approximately 10 times weaker than addressing a single qubit.

The cost metric applied in this case is Cost(NOT ) = 1, Cost(controlled−V) = Cost(controlled−V +) = 9, and

Cost(CNOT ) = 14. The distribution of the number of functions with respect to optimal cost realizations, given as

(cost, number of functions), is (0, 1), (1, 3), (2, 3), (3, 1), (14, 6), (15, 24), (16, 18), (28, 24), (29, 117), (30, 51),

(41, 24), (42, 159), (43, 342), (44, 75), (55, 132), (56, 762), (57, 597), (58, 45), (69, 396), (70, 2424), (71, 540),

(82, 360), (83, 2508), (84, 4208), (85, 140), (96, 1440), (97, 8988), (98, 1764), (110, 552), (111, 3860), (112, 4),

(123, 1232), (124, 8228), (125, 396), (137, 112), (138, 784). This example is included to show the flexibility of

the approach and is not pursued further in this paper.
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5 Comparisons of the Sets of Optimal Circuits

In this section, we compare the NCV-111 (NCV-012 and NCV-155) costs for the optimal synthesis of 3-variable

reversible functions using Toffoli gates up to size 3 (NCT library, [18]) with the costs of optimal NCV circuits. We

note that our implementation of the breadth-first search for the 3-variable reversible NCT circuits may differ from

the original as discussed in [18]. Due to the large number of optimal NCT circuits for some functions, the results

shown below may vary slightly depending on the actual program implementation. Further, the comparison is done

through substitution of every Toffoli gate in an optimal NCT circuit with a 5-gate NCV circuit ([14], page 182),

and thus assigning a cost of 5 in the NCV-111 metric. Gates NOT and CNOT are present in both libraries, NCT

and NCV, and thus require no specific attention.

5.1 Optimal NCV-111 vs. Optimal NCT Circuits

Table 1 shows the number of 3-variable reversible functions with circuits of the costs indicated. The second and

third columns refer to the optimal NCT circuits reported in [18] for NCT gate count and NCV-111 cost. The fourth

column is the NCV-111 cost for the circuits found by our search procedure. Table 1 also reports the weighted

average (WA) for the three scenarios.

The third and fourth columns of Table 1 show the substantial difference between the NCV-111 cost of the op-

timal NCT and optimal direct NCV-111 implementations for all 3-variable reversible functions. By comparing the

two circuits for each function, we have found that the maximal ratio of the cost of one optimal implementation over

the other is 3.375 = 27
8 . That is, even for circuits with a small number of inputs/outputs an optimal Toffoli circuit

transformed to NCV can be a factor of 3.375 larger that the optimal NCV realization. We also observe that on

average, the optimal NCT circuit is 1.3902 times more expensive (for the NCV-111 metric) than the corresponding

optimal NCV circuit found by our search procedure.

The important question of whether the NCT and NCV costs are related is addressed by computing the cor-

relation between the NCV-111 costs of the optimal NCT and optimal (in NCV-111 metric) NCV circuits. The

correlation coefficient equals 0.896. We conclude that the costs are reasonably but not strongly correlated. Finally,

we found it interesting to determine how many optimal NCT circuits have optimal NCV-111 cost. There are 1,610

(4%).

The results are illustrated in the cost comparison chart in Figure 5.
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Opt. NCT Opt. NCV-111

Cost GC [18] NCV-111 NCV-111

0 1 1 1

1 12 9 9

2 102 51 51

3 625 187 187

4 2780 392 417

5 8921 475 714

6 17049 259 1373

7 10253 335 3176

8 577 1300 4470

9 0 3037 4122

10 0 3394 10008

11 0 793 5036

12 0 929 1236

13 0 4009 8340

14 0 8318 1180

15 0 4385 0

16 0 255 0

17 0 1297 0

18 0 4626 0

19 0 4804 0

20 0 475 0

21 0 106 0

22 0 503 0

23 0 357 0

24 0 4 0

27 0 17 0

28 0 2 0

WA 5.8655 14.0548 10.0319

Table 1: Optimal NCT and optimal NCV-111 NCV circuits.
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Figure 5: Optimal NCT (X-coordinate) vs. optimal NCV-111 (Y-coordinate) circuits for the NCV-111 cost metric.

Each data point corresponds to a number of functions.

5.2 Optimal NCV-012 vs. Optimal NCT Circuits

We considered the set of optimal NCV-012 circuits as created by our program. Optimal NCV-111 implementations

were not substituted for those optimal NCV-012 circuits whose NCV gate count is not optimal.

A comparison of the NCV-012 costs of optimal NCV-012 NCV circuits and NCT circuits is made in Table

2 and Figure 6. The presentation is analogous to the one above for the NCV-111 costs metric. The maximum

ratio of NCT optimal circuit for NCV-012 cost over NCV-012 optimal circuit NCV-012 cost equals 8 (= 16
2 ).

The optimal NCT and optimal NCV-012 circuits for one such function are illustrated in Figure 7). On average,

however, this ratio is 1.2728. Correlation between the costs is 0.8999, which is almost identical to the correlation

between optimal NCT and optimal NCV-111 circuits in the NCV-111 cost metric. The number of functions where

the NCV-012 cost of an optimal NCT circuit equals the NCV-012 cost of an optimal NCV-012 circuit is 1,774

(4.4%).

6 Optimal Implementations with Restricted Qubit-to-Qubit Interactions

In the work above, we assumed that a direct interaction between any two qubit can be established (e.g. a 2-qubit

gate can use any two qubits). However, due to the specifics of a particular physical realization, this may not always

be the case. Some of the qubit-to-qubit interactions may only be available indirectly. On the other hand, in every

n-bit quantum computation it must always be possible to construct a connected graph with vertices representing

qubits and edges representing the possibility of the direct interaction between qubits. In the case n = 3, there

are only two non-isomorphic connected graphs. One is the complete graph, and the second is a star (all vertices

12



Opt. NCT Opt. NCV-012

Cost GC NCV-012 NCV-012 NCV-111

0 1 8 8 1

1 12 48 48 9

2 102 183 192 45

3 625 398 408 142

4 2780 486 480 315

5 8921 201 192 585

6 17049 16 16 1169

7 10253 0 192 2286

8 577 47 1056 3414

9 0 352 3168 4790

10 0 1347 4320 6744

11 0 3130 672 6420

12 0 3340 0 4328

13 0 561 0 4360

14 0 3 2880 4032

15 0 0 11520 1568

16 0 162 4416 112

17 0 1219 0 0

18 0 4435 0 0

19 0 8029 0 0

20 0 3872 0 0

21 0 128 9856 0

22 0 0 896 0

24 0 341 0 0

25 0 1946 0 0

26 0 4482 0 0

27 0 3977 0 0

28 0 609 0 0

29 0 6 0 0

32 0 289 0 0

33 0 489 0 0

34 0 194 0 0

35 0 3 0 0

40 0 16 0 0

41 0 3 0 0

WA 5.8655 19.1011 14.9800 10.5800

Table 2: Optimal size 3 reversible circuit NCV-012 costs in NCT and NCV bases. Each data point corresponds to

a number of functions.
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Figure 6: Optimal NCT (X-coordinate) vs. optimal NCV-012 (Y-coordinate) circuits for the NCV-012 cost metric.

Each data point corresponds to a number of functions.
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b
c
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Figure 7: (a) optimal NCT and (b) optimal NCV-012 circuits for the function [7,6,4,5,2,3,1,0].

are connected to one), see Figure 8. In this section we report results for the optimal synthesis assuming direct

interactions are allowed between qubits a and b, and b and c, but not between a and c. We assume the NCV-111

cost metric, however, the results can be calculated for other metrics. The numbers of functions requiring 0..23

gates are 1, 7, 29, 82, 181, 334, 374, 334, 337, 753, 1652, 2654, 2482, 1674, 1350, 3236, 6304, 6028, 1508, 1302,

2566, 4314, 2804, and 14. There are no functions requiring more than 23 gates.

It is interesting that in the case of non-restricted qubit interactions one of the cheapest non-linear (with respect

to EXOR) reversible gates is the Peres gate [15] defined by the transformation (a,b,c) 	→ (a,b⊕ a,c⊕ ab). It

can be implemented with 4 quantum NCV gates. An analogous (smallest non-linear reversible gate with a similar

transformation) of this gate in the case of restricted qubit interactions is the gate defined by the transformation

(a,b,c) 	→ (b,a,c⊕ab). It requires 6 quantum NCV gates as illustrated in Figure 9(a). Toffoli gates TOF(a,b;c)

and TOF(b,c;a) require 9 elementary quantum gates each and can be thought of as a SWAP gate (3 CNOTs)
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Figure 8: Non-isomorphic graphs with three vertices: star (left) and complete graph (right).

(a)(b)

a
b
c V+

(c)

V V

Figure 9: Optimal circuits for (a) (a,b,c) 	→ (b,a,c⊕ab), (b) TOF(a,b;c), and (c) TOF(a,c;b).

followed by the (a,b,c) 	→ (b,a,c⊕ab) transformation. An optimal implementation of TOF(a,b;c) is illustrated in

Figure 9(b). Toffoli gate TOF(a,c;b) is somewhat more expensive. It requires 13 elementary quantum operations

in its optimal implementation (see Figure 9(c)).

7 Conclusion

The results in Section 5 lead us to the following conclusion. Minimization of Toffoli gate count as a criterion for a

reversible synthesis method is not optimal with respect to implementation technologies and even for small param-

eters may result in a seemingly small circuit which may be as far off a technologically favorable implementation as

a factor of 8. It is natural to expect that for circuits with more variables the difference will grow. We suggest that

for estimating implementation cost, the commonly used gate count metric should be replaced with a metric that

accounts for the different costs of large building block (i.e., Toffoli gates), such as the weighted gate cost presented

here. Using such a metric would lead to the technologically favorable circuit (b) in Figure 7. To further illustrate

the application of this work, we note that libraries of optimal implementations form a basis for peep-hole type

optimizations such as the one reported in [16], and optimal implementation of Toffoli gate with a negative control

was used in [9] for the improved realization of multiple control Toffoli gates with negative controls.
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