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Quantum Circuit Simplification and
Level Compaction

Dmitri Maslov, Gerhard W. Dueck, Member, IEEE, D. Michael Miller, Member, IEEE, and Camille Negrevergne

Abstract—Quantum circuits are time-dependent diagrams de-
scribing the process of quantum computation. Usually, a quantum
algorithm must be mapped into a quantum circuit. Optimal syn-
thesis of quantum circuits is intractable, and heuristic methods
must be employed. With the use of heuristics, the optimality of
circuits is no longer guaranteed. In this paper, we consider a local
optimization technique based on templates to simplify and reduce
the depth of nonoptimal quantum circuits. We present and analyze
templates in the general case and provide particular details for
the circuits composed of NOT, CNOT, and controlled-sgrt-of-NOT
gates. We apply templates to optimize various common circuits
implementing multiple control Toffoli gates and quantum Boolean
arithmetic circuits. We also show how templates can be used to
compact the number of levels of a quantum circuit. The runtime of
our implementation is small, whereas the reduction in the number
of quantum gates and number of levels is significant.

Index Terms—Circuit optimization, quantum circuits, time
optimization.

I. INTRODUCTION

ESEARCH in quantum circuit synthesis is motivated by

the growing interest in quantum computation [19] and
advances in experimental implementations [4], [7], [8], [25].
In realistic devices, experimental errors and decoherence intro-
duce errors during computation. Therefore, to obtain a robust
implementation, it is imperative to reduce the number of gates
and the overall running time of an algorithm. The latter can be
done by parallelizing (compacting levels) the circuit as much as
possible.

Even for circuits involving only a few variables, it is at
present intractable to find an optimal implementation. Thus, a
number of heuristic synthesis methods have emerged. Applica-
tion of these methods usually results in a nonoptimal circuit,
which can be simplified with local optimization techniques.
Additionally, some quantum circuits for important classes of
functions, such as adders and modular exponentiation, were
created and compacted in an ad hoc manner [5], [16].

Manuscript received May 14, 2007; revised July 13, 2007 and August 1,
2007. This work was supported by postdoctoral fellowships and discovery
grants from the National Sciences and Engineering Research Council of
Canada. This paper was presented in part at the 2005 Design, Automation and
Test in Europe Conference and Exposition, Munich, Germany, March 2005.
This paper was recommended by Associate Editor K. Chakrabarty.

D. Maslov and C. Negrevergne are with the Institute for Quantum Com-
puting, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
dmitri.maslov @gmail.com).

G. W. Dueck is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada.

D. M. Miller is with the Department of Computer Science, University of
Victoria, Victoria, BC V8W 3P6, Canada.

Digital Object Identifier 10.1109/TCAD.2007.911334

Local optimization has only recently been considered as a
possible tool for the gate count reduction in quantum [13]
and reversible (quantum Boolean) circuits [10]. Some quantum
circuit identities that could be used for circuit simplification can
be found in [19]. While these provide several rewriting rules
with no ready-to-use algorithm for their application, there is
clearly a benefit in a systematic approach using templates that
are discussed in this paper. A somewhat different approach for
local optimization of reversible NOT-CNOT-Toffoli circuits
was applied for the simplification of random reversible circuits
in [22]. That approach and our template method are difficult to
compare as they have been applied to different types of circuits
with different metrics for the circuit cost.

So far, computer-aided design tool engineers have spent little
effort on minimizing the number of logic levels in quantum
circuits. However, this allows a shorter running time as it results
in parallelization of the algorithm. More importantly, in the
popular quantum error model where errors appear randomly
with time, a parallel circuit helps reduce the errors. For instance,
it may be possible to use a smaller number of error correction
code concatenations (each of which is a very expensive opera-
tion, requiring at least triple the number of physical qubits [19])
if the circuit is well parallelized. To the best of our knowledge,
all of the presently existing quantum circuits were at best
compacted in an ad hoc fashion. In this paper, we automate
level compaction using templates.

Methods based on templates have been considered for Toffoli
reversible network simplification [14]. In this paper, we revisit
the definition of templates and show how they can be applied
in the quantum case as a systematic basis for quantum circuit
simplification and level compaction.

This paper discusses circuit parallelization, reports the im-
proved results based on a new and significantly more efficient
implementation, and includes extensive testing results, as well
as certain new discussions. It is organized as follows: We start
with a brief overview of the necessary background in Section II.
In Section III, we define the templates and discuss some of their
properties. We present a method to identify the templates and
describe two algorithms, one to reduce the cost and the other
to reduce the number of logic levels of quantum circuits, in
Section IV. We next choose a specific quantum gate library
and illustrate the effectiveness of the aforementioned approach.
Section V presents a set of small quantum templates for NOT,
CNOT, and controlled-sgrt-of-NOT (NCV) gates and illustrates
the algorithms. The benchmark results presented in Section VI
are divided into two parts. We first optimize quantum im-
plementations of the multiple control Toffoli gates (including
multiple control Toffoli gates with negative controls) and then
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consider optimization of some NOT-CNOT-Toffoli circuits
available through the existing relevant literature. Discussion of
future work and concluding remarks are found in Sections VII
and VIIL

II. BACKGROUND

We present a short review of the basic concepts of quantum
computation necessary for this paper. An in-depth coverage can
be found in [19].

The state of a single qubit is a linear combination «|0) +
BI1) (also written as a vector (c, 3)) in the basis {|0),[1)},
where « and 3 are complex numbers, called the amplitudes,
and |o|? + |3]? = 1. Real numbers |a|? and |3]? represent the
probabilities p and ¢ of reading the logic states |0) and |1)
upon measurement. The state of a quantum system with n > 1
qubits is given by an element of the tensor product of the single
state spaces and can be represented as a normalized vector of
length 2™, called the state vector. Quantum system evolution
allows changes of the state vector through its multiplication by
2™ x 2™ unitary matrices, called gates.

The preceding paragraph models how a transformation can
be performed, but it does not indicate how to identify the
unitary operations that compose the transformation or how to
implement them. Efficiency of the physical implementation
depends on the system’s Hamiltonian and the details of different
systems (and associated gate costs) are not a focus of this
paper. Typically, certain primitive gates are used as elementary
building blocks [2], [9]. Among these are as follows:

1) NOT (z +— z) and CNOT ((z,y) — (z,2 @ y)) gates,

where z, y € {0, 1} and @ is addition modulo 2;

2) a Hadamard gate, which is defined by H =
1 1
ava (1 )

3) a controlled-V gate, which, depending on the value on
its control qubit, changes the value on the target qubit
using the transformation given by the matrix V = (i +

1 —i
()
4) a controlled-V T gate, which, depending on the value of

its control qubit, changes the value on the target qubit
using the transformation vi=v-1;

5) rotation gates R,(vy), where € [0,2n] and a €

{z,y,2}.

We shall write G~! to denote the gate implementing the
inverse function of the function realized by gate GG. In context,
we will use G to mean a gate or the transformation matrix for
that gate. The circuit diagrams are built in the popular notations,
such as those used in [19]. In short, horizontal “wires” represent
a single qubit each; the time in the circuit diagrams is prop-
agated from left to right; (positive) gate controls are depicted
with e; targets appear as @ for NOT and CNOT gates, m for

a controlled-V gate, and for a controlled-V* gate, with
vertical lines joining the control(s) of a gate with its target.
The principle of the optimization method is to associate a
cost to each of these elementary gates and lower the overall
circuit cost by reducing the number of high-cost gates. The

cost definition must reflect how difficult it is to implement the
gate and, therefore, will depend on the details of the physical
device considered to implement the circuit. For example, for
nuclear magnetic resonance (NMR) techniques, the cost of the
gate must take into account the number of RF pulses, as well as
the duration of the interaction periods necessary to implement
the gate [4]. In a setting guided by the Ising-type Hamiltonian
in a weak coupling regime (such as liquid NMR [4] and
superconductors [6]), a controlled-V and its complex conjugate
must be associated with approximately half the cost of a CNOT
gate each. Thus, controlled-V and controlled-V+ are not at
all complex gates. Two qubit gate implementation costs in any
given Hamiltonian can be found using the technique discussed
in [26].

The Toffoli gate [24] and its generalization with more than
two controls serve as a good basis for synthesis purposes.
Indeed, every reversible (quantum Boolean) function can be
realized as a cascade of multiple control Toffoli gates [2], [14].
The multiple control Toffoli gate flips the target bit if the control
bits are in a given Boolean state. Unfortunately, the multi-
ple control Toffoli gates (including the original Toffoli gate
[24]) are not simple transformations in quantum technologies.
They require a number of elementary quantum operations, and
Toffoli gates with a large number of controls can be quite costly
[2]. However, they can be implemented using circuits composed
of three-qubit Toffoli gates [2]. Finally, the three-qubit Toffoli
gate can be constructed from a set of gates, which includes the
NOT, CNOT, controlled-V, and controlled-Vt. We therefore
consider all these gates in Section V when we search for tem-
plates to simplify the best known quantum circuits implement-
ing large Toffoli gates and reversible functions. In addition, any
unitary can be synthesized as a generic quantum circuit through
exploring the properties of matrix decompositions [2], [18],
[21]. We do not consider those circuits here, but we point out
that our circuit simplification techniques are applicable in any
of the aforementioned cases.

III. TEMPLATES: DEFINITION

To decrease the cost of a circuit, the basic idea is to replace a
subcircuit with an equivalent one that has a lower cost. We will
call this procedure the application of a rewriting rule. Some
problems arise with this technique.

1) In general, even for simple circuits, if rotation gates with
any parameter v are allowed, the number of possible
rewriting rules is infinite.

2) Equivalent circuits with the same cost might require
different sets of rewriting rules to be simplified.

3) A subcircuit may be rewritten in another form having
the same cost, but this second form could allow extra
simplifications on the circuit using other rewriting rules.

One of the problems arising from these considerations is
to minimize the number of rewriting rules by keeping only
the “essential” ones. To address these issues, we introduce the
notion of templates that will be applicable to all quantum gate
libraries and discuss the algorithms for quantum gate reduction
and level compaction.
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Definition: A size m template is a sequence of m gates that
implements the identity operator and that satisfies the following
constraint: any template of size m must be independent of all
templates of smaller or equal size, i.e., for a given template T’
of size m, no application of any set of templates of smaller or
equal size can decrease the number of gates in 7' or make it
equal to another template.

A template can be seen as a generalization of the
rewriting rules since rewriting rules can be derived from
it. For example, forward application of the template
GoG1 - Gp—1 = I allows us to find a rewriting rule of the
form GiG(iJrl) modm """ G(i+p71) modm Gal_l) mod m
G(’il_Q) modm " -G(’iip) modme Where  0<i4, p<m-—1
Similarly, backward application of the template is a rewriting
rule of the form G;lGéil) modm G&£k+1) modm
G(i+1) mod mG(i+2) modm """ G(z—k) mod m> where 0 <14,
p<m-—1.

A template application requires that the inverse of each gate
be available. Clearly, templates are a more compact way of
representing nonredundant rewriting rules as they are capable
of storing up to 2m? rewriting rules.

See the Appendix for a proof of the effect of the forward and

backward applications of templates.

IV. TEMPLATES: APPLICATION

In this section, we present a method to find and classify
the templates and introduce two algorithms using them. One
is an algorithm for quantum cost reduction, and the other is for
quantum circuit level compaction, both based on the notion of
the templates.

A. Template Identification

First, we find all templates of the form AA~! (length 2),
which we call gate-inverse rules. This is straightforward, since
every self-inverse gate A forms the template AA and every pair
of gates A and B, where B = A~!, forms one template of the
form AB.

Subsequent templates are found by identifying increasingly
longer sequences of gates that realize the identity function and
that cannot be reduced by other available templates.

Templates of the form ABAB (length 4), with A = A~! and
B = B! applied for parameter p = 2, result in construction of
the rewriting rules AB — BA and BA — AB. That is, they
define the conditions under which two gates commute. We call
such templates moving rules and apply them to move gates to
form matches, leading to reduction via other templates.

For applications, we suggest seeking a complete classifica-
tion of the templates of small size and then supplementing
those by a set of templates that appear to be useful when
a specific synthesis procedure is applied. For example, if a
synthesis procedure (or the circuit types one considers) tends
to use a specific type of subcircuit of cost u, which is neither
optimal (assume an optimal cost of v) nor can be simplified by
a small-size complete set of templates, a template with a total
cost i + v can be created (followed by a generalization process
when and if needed). In this paper, we do not construct any of

these supplementary-type templates since we apply templates
to the circuits from different authors obtained from different
synthesis procedures.

B. Cost Reduction

In this section, we present an algorithm to reduce the generic
quantum circuit cost using the templates. To apply the algo-
rithms to a specific physical implementation, we only need to
choose a relevant cost definition.

Input: A quantum circuit specification, i.e., a sequence of
gates C1Cs - - - C,.

Output: A quantum circuit computing the same function as
the input circuit but having a possibly lesser cost.

Algorithm:

1. Let Cj be the start gate in the circuit for a potential
template match. Initially, & = 2.

2. We attempt to match the templates in the order of size
(excluding the moving rules). The attempt to match to a size m
template GoG1 - - - G,,,—1 proceeds as follows:

a) Forward matching: Apply the moving rules to
arrange the gates preceding C, to be able to match them with
the given size m template. At this step, we determine pair (7, p)
such that Cy_; = G (j44) mod m» 0 < ¢ < p. When such j and p
are found, gates Cy_p—1, Crp—p—2, ..., C) can be replaced by
the sequence G(’j1+p+i) odme 0 <@ < m — p. Substitution is
done if it is beneficial from the point of view of the overall
circuit cost reduction.

b) Backward matching: To backward match a size
m template, the same procedure applies with the following
matching condition: Cj_; = G(’jlfi) mod m> 0 < ¢ <p. Then,
gates C_p_1, Cr_p_2, ..., Cj can be replaced by the sequence
G (j4+p—i) mod m» 0 < 7 < m — p. The decision to replace or not
is based on a chosen circuit cost metric.

3. We propagate this procedure through the circuit.

e If a template substitution was made, then k is set to
the index of the leftmost gate substituted, and we repeat step 2.

e Otherwise, if we can, increment k£ by 1 and repeat
step 2. If we cannot because CY; is already the rightmost gate in
the circuit, the algorithm terminates.

The gate replacement at step 2 is performed when it is
beneficial to do such replacement, i.e., when the total circuit
cost is reduced. This imposes extra constraints on the parameter
p depending on the exact cost definition. For instance, with a
simple gate count cost metric, p must be greater than m/2. If
many pairs (j, p) are found, the one associated to the biggest
cost reduction is chosen for the gate substitution. However, even
if the total cost after template application stays the same (for a
simple gate count cost metric, this means applying an even-size
template by replacing its half with another half, i.e., for even
m and p = m/2), the substitution can be beneficial as the new
circuit arrangement may allow other cost-reducing template
applications. We take this into account by allowing such “cost-
retaining” template applications as long as k < Flag (k is the
value of the subscript of C}), with the Flag initially set to 0.
After each cost-retaining template application, the Flag is set
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to the current k value, and after each cost-reducing template
application, the F'lag is set back to 0. This guarantees that the
cost reduction algorithm will not run into an infinite loop while
allowing a cost-retaining template application.

In Section V, we illustrate how the templates are applied to
reduce the gate count.

C. Level Compaction

We next suggest a greedy algorithm for quantum circuit
level compaction employing templates. A level is defined as a
subsequence of commuting gates that can be applied in paral-
lel. Level compaction helps increase the parallelization of the
circuit implementation and, therefore, not only optimizes the
runtime of the circuit but also helps decrease the decoherence
effects by shortening the overall execution time.! For simplicity
of the algorithm description, we assume that all gates have the
same duration; therefore, the execution time of a level is equal
to a single gate duration. We also assume that neighboring gates
operating on disjoint qubit subsets can always be applied in par-
allel, which is a common assumption for quantum technologies.

Input: A quantum circuit specification, i.e., a cascade of
gates C1Cs - - - C.
Output: A reorganized circuit with possibly fewer levels,
computing the same function as the input circuit.
Algorithm: The principle is to assign a specific level to
each gate.
1. Initially, all gates in the circuit have an undefined level,
i =1, and we define Qlevel; as an empty set.
2. Consider C; as the leftmost gate that has not yet been
assigned a level. Assign level 1 to it.
3. Until each gate CY, i.e., right of C}, is considered:

a) If gate C}, does not share common qubits with any
of the gates in level Qlevel; and if it can be moved left (using
the moving rules) until it is adjacent to the leftmost gate with
level ¢, then assign level ¢ to it.

b) If it is not possible to move gate CY; just as described,
then apply templates using the aforementioned algorithm, with
C}, as the start gate and considering only those gates whose
level has not yet been assigned. Only templates with an even
number m of gates are applied, and only substitutions of
m/2 for m/2 gates are made. Such substitution may allow a

!For instance, a liquid NMR circuit with a high degree of parallelization
of single qubit rotations and ZZ gates will be significantly shorter than its
unparalleled version. Indeed, single qubit rotations on homonuclear spins are
usually implemented by selective soft pulses sequentially sent to act on each
spin. Nevertheless, if we want to act on all homonuclear spins in parallel, it
is possible to use a single broad-band short pulse [4]. As for heteronuclear
spins, modern spectrometers have several channels that can be simultaneously
used. Therefore, one can rotate heteronuclear spins in parallel by pulsing on
them in parallel. More importantly, in a typical NMR system, the main time-
consuming gates are the interaction gates (ZZ gates). Because all the couplings
are always on in a molecule, ZZ gates naturally occur in parallel in the circuit.
To apply a ZZ gate to a given pair of qubits, one needs to use refocusing
techniques [4] involving pulses and delays to cancel all the ZZ interactions but
the desired one. Therefore, in most of the cases, regrouping the ZZ gates will
allow one to optimize the refocusing scheme and reduce the overall number of
required delays. In particular, the refocusing scheme exists for any subset of
nonintersecting gates, which is defined as a single logic level in this paper [11].

439

Fig. 1. Quantum templates other than the gate-inverse and moving rules. Each
of these circuits implements the identity.

gate (possibly with movement) to subsequently be assigned to
level <.

4. If there are still gates that have not assigned a level, then
add 1 to ¢ (the number of levels), consider a new empty Qlevel;,
and repeat steps 2 and 3.

At this stage of development, the level compaction algorithm
is greedy. We expect that it can likely be improved. However,
our tests have shown that its current performance has already
improved the relevant quantum circuits.

V. QUANTUM NCV TEMPLATES

We now present a set of quantum templates based on the
NCV gate library.

1) The gate-inverse rules: NOT and CNOT are self-inverses,
and controlled-V and controlled-V ™+ are the inverses of
each other.

The moving rule (replace AB with BA): assuming gate
A has control set C4 (C'4 is an empty set in the case of an
uncontrolled gate) and target T4, and gate B has control
set C'p and target 1z, these two gates form a moving rule
if,and only if, Ty € Cpand Tp Z Cj4.

Larger templates: all other templates that we have iden-
tified are shown in Fig. 1, where V (alternatively V)
is substituted for all occurrences of Vj, and VT (alter-
natively V') is substituted for all occurrences of V1, i.e.,
the substitution is consistent and distinct for V and V;.
The templates reported here were found by inspection.
We are currently developing a program to systematically
find larger templates and to verify the completeness of the
current set.

2)

3)

To illustrate how templates are applied, consider the quantum
circuit for the three-input full adder with ten gates from [9]. The
circuit is built on four qubits as the three-input adder must be
extended to a four-variable reversible function. Note that the
original circuit presented in [9] gives 1111 as the output for
the input pattern 0100 instead of the expected 1011. The circuit
shown in Fig. 2(a) corrects this.

In the circuit in Fig. 2(a), gates 5 and 7 (counting from
the left) can be moved together and form a gate-inverse pair.
We move them together and delete them by applying the gate-
inverse rule. This results in the circuit illustrated in Fig. 2(b).
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Fig. 2. Simplification of a ten-gate quantum network for the three-qubit full
adder.

Next, we notice that gates 4, 6, and 8 in this circuit can also
be brought together (gates 4 and 8 should be moved toward
gate 6). Fig. 2(c) shows the three gates brought together, and
Fig. 2(d) illustrates the resulting circuit after the size-5 template
is applied.

The circuit that we found using template simplification
[Fig. 2(d)] is equivalent to the optimal circuit (for a given
input-to-output assignment) reported in [9]. It took our program
< 0.001 second (elapsed time on a 1.8-GHz Athlon XP2400+
machine with a 512-MB RAM running Windows) to simplify
the circuit in Fig. 2(a) into the circuit in Fig. 2(d). The time
reported in [9] to synthesize such a circuit is seven hours. This
example clearly shows that templates are useful and effective.

A likely optimal quantum circuit for the three-input full
adder can be constructed from its well-known reversible im-
plementation, as illustrated in Fig. 3(a). We first substitute
quantum circuits for the Peres gates [20], each of which is a
Toffoli-CNOT pair [see Fig. 3(b)]. We then apply the templates.
In this case, gates 4 and 6 can be moved together and match the
gate-inverse rule. Thus, they are both deleted, leading to the
circuit in Fig. 3(c). Finally, we apply the level compactor, and
the circuit is transformed into the one illustrated in Fig. 3(d)
(different logic levels are separated by dashed vertical lines).
The number of levels in the compacted circuit is four, and this
is a minimum because there are four gates with targets on qubit
0— C(out'

A. Other Templates

It is possible to construct the templates in other gate li-
braries and then use the discussed cost reduction and level
compaction algorithms verbatim. Constructing the templates
for the finite (those seem to be more physical) gate libraries
may be reduced to finding the rewriting rules by hand and
generalizing them into the templates, or running a computer
search. A parameterization/classification of the templates in this
case may be helpful. However, in the libraries with an infinite
number of gates, a classification is necessary. We suggest
that each template (template class) be written in the circuit
form and followed by an algebraic expression, conditional
upon which the template applies. For example, in the library
with single qubit rotations and CNOT gates, the following
template might be constructed: R, (a) Ry (5) R4 (7), where o +
B+ ~v = 0. Application of such a template can be thought
of as finding two single qubit rotations about the same axis

(not necessarily the conventional X, Y, or Z, but a possible
combination of them), which can be commuted until they are
neighbors, and then, they are replaced by a single cumulative
rotation. Another example of a template for this gate library
could be Rx(a)Rz(—7/2)Ry (a)Rz(n/2), which could be
used to replace some three gates with one, or, for instance,
eliminate all Rx gates from a given circuit. In the gate li-
brary with controlled gates, the following template is pos-
sible: CU(b,c)CNOT(a,b)CU'(b,c)CNOT(a,b)CU(a,c),
conditional upon gate CU being a self-inverse. This template is
a generalization of the one used in this paper (third template in
Fig. 1), but it captures an infinite number of the rewriting rules.
Other templates are possible and depend on the considered gate
base. The discussed examples are not intended to be treated
as a complete review of the possible templates, but rather an
illustration of what kind of templates may be constructed.

VI. NUMERICAL RESULTS

Reversible logic and quantum arithmetic circuits are often
specified with NOT, CNOT, and Toffoli gates [2], [5], [15], [16],
[19], rather than with gates from the NCV set. Circuits with
multiple control Toffoli gates have been extensively studied,
and synthesis procedures exist. To process these circuits, we
need to transform every Toffoli gate into a circuit with NOT,
CNOT, controlled-V, and controlled-V+ gates. We use the
circuit in Fig. 4(a) for this purpose. Due to the symmetry
properties of the NCV and Toffoli gates (interchangeability of
the controlled-V and controlled-V*+ gates in quantum NCV
circuits for reversible functions [17], symmetry of Toffoli gate
controls, and self-inverse property of the Toffoli gate), there
exist eight distinct, but equivalent, NCV circuits for a Toffoli
gate. In our procedure, we use only two of them, i.e., the circuit
in Fig. 4(a) and its inverse, and keep the one resulting in a
better circuit simplification. Empirical tests have shown that
the use of the other six transformations will not yield any new
improvements.

A. Multiple Control Toffoli Gate Simulations

Multiple control Toffoli gates and their variants with negated
controls are a popular basis for the synthesis of reversible
circuits and are often used to construct quantum circuits. For
instance, multiple control Toffoli gates are used in quantum
error correcting circuits right after the syndrome was found
to correct errors [19]. Even more importantly, multiple control
Toffoli gates are at the heart of the amplitude amplification
technique [3] that is often considered as a separate class of
quantum algorithms, of which there are only a few. Thus,
multiple control Toffoli gates are indispensable for quantum
computations, and it is very important to have efficient quantum
circuits for them. Implementations of multiple control Toffoli
gates were studied in [1] and [2]. In the following, we simplify
and compact the levels in the multiple Toffoli gate circuits
described in [1] and [2] using our template-based algorithms.
We compare our results to those initially presented. Table I
summarizes the results.
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Fig. 4. Optimal NCV circuits for the (A) three-qubit Toffoli gate [19] and (B)
three-qubit Toffoli gate, with a single negative control (b) [17].

TABLE 1
SIMPLIFICATION OF THE MULTIPLE CONTROL TOFFOLI GATE
IMPLEMENTATIONS BY BARENCO ef al. [2] AND ASANO AND IsHII [1]. THE
RESULTS ARE GROUPED INTO TWO TABLES ACCORDING TO THE SOURCE
OF THE INITIAL CIRCUIT. COLUMNS “Size” AND “Ancilla” SHOW THE SIZE
(n-QUBIT GATE) OF THE MULTIPLE CONTROL TOFFOLI GATE AND THE
NUMBER OF ANCILLA QUBITS ASSOCIATED WITH THE IMPLEMENTATION
OF THIS GATE, RESPECTIVELY. COLUMNS “[citation] GC” AND “[citation]
D” PRESENT THE GATE COUNT (GC) IN THE BEST REPORTED QUANTUM
NCV CIRCUIT TAKEN FROM THE APPROPRIATE SOURCE INDICATED
IN “[citation]” AND THE CORRESPONDING CIRCUIT DEPTH D,
RESPECTIVELY. WE SHOW THE GATE COUNTS AND CIRCUIT DEPTH
FOR OUR OPTIMIZED IMPLEMENTATIONS IN COLUMNS “Opt-d GC” AND
“Opt-d D,” RESPECTIVELY. WHENEVER COLUMNS “[citation] D” AND
“Opt-d D” ARE NOT PRESENT, THIS MEANS TH AT THE DEPTH
EQUALS TO THE NUMBER OF GATES BOTH IN THE CIRCUIT BEFORE
OPTIMIZATION AND IN THE CIRCUIT AFTER OPTIMIZATION

Size | Ancilla | [2] GC || Opt-d GC
El T 20 4
5 2 40 26
6 3 60 38
7 4 80 50
8 5 100 62
9 6 120 74
10 7 140 86
11 8 160 98
12 9 180 110
n>3 n—3 20n — 60 12n—34
Size Ancilla | [1] GC (1D Opt-d GC | Opt-d D
6 3 80 40 60 29
10 7 320 80 248 59
n=2""T42 | n—3 | 5(n—2)2 | 10n—20 || 3.75(n—2)% | 7.5n— 10

The results in Table I show that the set of multiple control
Toffoli gates of size n realizations with gate count of 20n —
60 [2, Lemma 7.2] is always simplified to the circuits with
12n — 34 gates. Based on the regularity and predictability of
this simplification, we conjecture that this will always be the
case. Furthermore, our experiment showed that asymptotically,
we obtain a 40% reduction in the number of gates and in the
number of logic levels required in simulation of the multiple
control Toffoli gates. Similarly, circuits for multiple control
Toffoli gates with 5(n — 2)? gates and depth of 10n — 20 seem
to always simplify to the circuits with 3.75(n — 2)? gates and
depth of 7.5n — 10.

Multiple control Toffoli gates can be implemented with a
single auxiliary qubit, as discussed in [2, Corollary 7.4]. Using

Simplification of an eight-gate quantum circuit for the three-qubit full adder.
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Fig. 5. Simulations of a multiple control Toffoli gate with some but not all
negations illustrated for the maximum number of possible negative controls
[2]. (a) Using n — 3 auxiliary qubits. (b) Using a single auxiliary qubit.

our tool, we achieved an upper bound of 24n — 88 (for n > 5)
for the number of gates, and the number of levels required in
multiple control Toffoli gate simulations with a single auxiliary
qubit using the decomposition from [2, Lemma 7.2]. We stress
that the aforementioned formulas are upper bounds since we
did not yet apply our techniques to simplify such circuits.
There must be a clever approach in which both types of n — 3
auxiliary qubit decompositions are used in the construction due
to [2, Corollary 7.4], and depending on whether the final gate
count or depth needs to be optimized, the choice for a particular
multiple Toffoli gate substitution may vary.

Multiple control Toffoli gates with negations may also be
useful in some applications. A canonical implementation of
such gates [19, Fig. 4.11 and 4.12] assumes a logic layer of
NOT gates preparing the literals in the right polarity, followed
by a multiple control Toffoli gate with all positive controls and a
level of NOT gates returning the values of literals to the positive
polarity. This makes multiple control Toffoli gates with negative
controls marginally more expensive than the multiple control
Toffoli gates with only positive controls. In the following, we
show that a multiple control Toffoli gate with some but not all
negative controls can be implemented with the same cost as
a multiple control Toffoli gate of the same size but with only
positive controls.

Given that the three-qubit Toffoli gate with a single negated
control can be implemented with the same (minimal) number
of gates as a three-qubit Toffoli gate with positive controls [17]
[see Fig. 4(b)], such a gate can be used in the circuit proposed
by Barenco et al. [2] to implement multiple control Toffoli gates
with some but not all negations with no cost overhead. Such a
simulation is illustrated in Fig. 5(a).

Furthermore, such multiple control Toffoli gates with some
but not all negative control implementations [2, Lemma 7.2]
rely on a similar strategy to simplify and compact the levels
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as the one used for a multiple control Toffoli gate with all
positive controls. Therefore, each multiple control Toffoli gate
with some but not all negative controls can be implemented
with (n — 3) auxiliary qubits, 12n — 34 CNOT, controlled-V
and controlled-V* gates, and 12n — 34 logic levels (n > 3).
Using the simulation illustrated in Fig. 5(b), one can construct a
multiple control Toffoli gate with some but not all negations and
requiring a single auxiliary qubit with no more than 24n — 88
gates and the same number of logic levels (for n > 5).

Implementation of a multiple control Toffoli gate with all
negations that uses (n — 3) auxiliary qubits will require two ex-
tra NOT gates; however, the number of levels will not increase.
Similarly, a multiple control Toffoli gate with all negation
simulation with a single auxiliary qubit will require four extra
NOT gates with no increase in the number of logic levels (upper
bound).

A similar argument holds in the case of the decomposition
from [1], but we do not discuss this here. Rather, we move on
to considering other types of circuits.

B. Benchmark Circuits

Here, we present the results of the application of the tem-
plates to a number of quantum circuits implementing various
reversible Boolean and quantum arithmetic functions that can
be found in the literature. Many reversible/quantum circuits
have constant input values and garbage outputs. This typically
occurs when a nonreversible function is mapped to a reversible
one prior to synthesis as a reversible circuit. In such cases,
extra simplifications at the extremities of the circuit can be
performed.

1) If a gate whose control is an input constant can be moved
to the beginning of the circuit, then depending on the
constant input controlling the gate being 0 or 1, the
gate can be either deleted or uncontrolled (assuming an
uncontrolled gate has a lesser cost).

2) If a gate with the target on a garbage output can be moved
to the end, we can delete it as we are not interested with
the value of the garbage output.

We took the circuits from [15], which are composed of
NOT, CNOT, and Toffoli gates, and compared their quantum
realization costs (defined as NCV gate count) before and after
applying the templates. We also compacted the levels in the
simplified circuits and reported the number of obtained levels.
Since [15] do not compact the levels in their circuits, we have
no comparisons for the number of levels. Table II summarizes
the results.

Let us describe the simplification procedure for one of these
benchmark circuits, i.e., the five-qubit oracle function mod5. It
leaves the first four inputs unchanged and inverts the last one if,
and only if, the first four represent an integer divisible by five.
We first found a Toffoli gate realization (circuit mod5mils in
Table II). We then applied the previously described template-
based optimization techniques. The resulting circuit is illus-
trated in Fig. 6(a). If the inputs are not required to be passed
through unchanged, the last three gates may be dropped. We
next applied the level compaction algorithm. The compacted
version of the circuit in Fig. 6(a) is illustrated in Fig. 6(b).

TABLE 1II
SIMPLIFICATION OF THE BENCHMARK CIRCUITS FROM [15]. CIRCUIT
NAME APPEARS IN COLUMN “Name” AND IS DIRECTLY TAKEN FROM
[15]. “Size” INDICATES THE NUMBER OF QUBITS IN THE CIRCUIT. “NCV
GC” Li1STS THE QUANTUM NCV GATE COUNT WHEN THE TOFFOLI GATES
IN THE CORRESPONDING CIRCUIT ARE SUBSTITUTED WITH THEIR
QUANTUM IMPLEMENTATIONS. “Optimized NCV GC” AND “Levels” SHOW
THE QUANTUM GATE COUNT AND THE NUMBER OF LOGIC LEVELS,
RESPECTIVELY, AFTER REVERSIBLE GATES ARE SUBSTITUTED WITH
THEIR QUANTUM CIRCUITS AND THE RESULTING CIRCUIT IS RUN
THROUGH THE TEMPLATE SIMPLIFICATION AND THEN THE LEVEL
COMPACTION PROCESSES. WE DO NOT REPORT THE RUNTIMES IN
THIS TABLE BECAUSE ALL CIRCUITS WERE ALMOST
INSTANTANEOUSLY COMPUTED

Name Size [ NCV GC Optimized NCV GC | Levels
20f5d2 7 40 29 25
rd32 4 12 6 4
3_ 17t 3 14 10 10
4.49-12-32 4 32 27 21
6symd?2 10 72 33 27
9symd?2 12 108 82 50
mod5d1 5 24 14 9
mod5d2 5 25 11 8
modSmils 5 13 9 5
ham3tc 3 9 7 7
hamT—25—49 7 49 40 28
hwb4 —11-23 4 23 21 16
rd53d2 8 44 31 19
rd73d2 10 76 55 34
rd84d1 15 112 86 41
a a
b b
(a) ¢ c
d B NV SN DD d
0 v v out
A —— e Pp——a
b : — : 0 b
(b) ¢ . ey e c
d bl et lerelterdia d
0 V 1 V : 1 V 1 V 1 1 1 Out

Fig. 6. Circuit for the oracle mod5.

Note how the level compactor changes the form of the circuit
to allow fewer levels. This happens when even-size templates
are applied to change the form of the circuit to facilitate further
level compaction. Unless this is done, the circuit in Fig. 6(a)
cannot be compacted to have less than ten logic levels. This
is because qubit d is used ten times as a control/target. If the
inputs need not be recovered, the depth of such computation is
only five logic levels, and the number of required gates is nine.

Finally, we applied the simplification procedure to some
leveled quantum circuits for the adder, comparator, and modular
exponentiation type functions (the latter is an important part
of the Shor’s factoring algorithm) reported in [5] and [16]. We
took their circuits, substituted quantum implementations of the
Toffoli gates where needed, simplified them, and compacted
the levels (treating each circuit as nonleveled). In the circuit
with Fredkin gates [16, Fig. 4], we used CNOT-Toffoli-CNOT
decomposition of the Fredkin gate, and in the circuit with single
negative control Toffoli gates [16, Fig. 5], we used the circuit in
Fig. 4(b). The results are reported for the three circuits that can
be found in [5] and the three circuits from [16] (Table III).
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TABLE III
SIMPLIFICATION OF THE BENCHMARKS FROM [5] AND [16]. “Name” SHOWS WHERE THE INITIAL CIRCUIT CAN BE FOUND, “Size” LISTS THE NUMBER
OF QUBITS USED, “NCV GC” LISTS THE NUMBER OF NCV GATES REQUIRED, AND “Levels” SHOWS THE NUMBER OF LEVELS (EACH LEVEL
WITH A TOFFOLI GATE CONSIDERED TO HAVE A WIDTH OF 5). OUR RESULTS FOR THE NUMBER OF GATES AND THE NUMBER OF LEVELS
ARE LISTED IN COLUMNS “Optimized NCV GC” AND “Optimized levels.” THE FINAL COLUMN PRESENTS THE TOTAL RUNTIME
(ELAPSED TIME) REQUIRED BY OUR SOFTWARE TO COMPLETE THE CIRCUIT SIMPLIFICATION AND COMPACT THE LEVELS
WHEN RUN ON AN ATHLON XP2400+ WITH A 512-MB RAM MACHINE UNDER WINDOWS

Name Size | NCV GC | Levels || Optimized | Optimized | Runtime
NCV GC levels
[5]. Fig. 5 35 368 86 303 53 1.883 sec
[5], Fig. 6 24 172 49 110 27 0.341 sec
[5], Fig. 7 26 337 101 287 61 1.903 sec
[16], Fig. 2 10 60 47 34 20 0.07 sec
[16], Fig. 4 15 70 44 58 23 0.210 sec
[16], Fig. 5 30 168 37 112 21 0.301 sec
VII. FUTURE WORK APPENDIX

There are several possibilities to improve our simplification
approach. We are interested in developing a smart automated
procedure for substituting quantum circuits for multiple con-
trol Toffoli gates. The search for the new templates can be
accomplished by finding all identities of the given size and
applying templates to simplify them. All identities that do not
simplify are the new templates. Such a search method is also
suitable for proving the completeness of the set of the templates
found.

As far as level compaction is concerned, we presented a very
simple and greedy algorithm. We expect that our results for
the number of levels can be improved using a smarter level
compaction algorithm. However, we believe that the templates
could still serve as an efficient core for such an improved level
compactor.

Finally, we are interested in extending the experimental
results of the template application to other sets of quantum
gates, including rotation gates and elementary pulses (NMR
quantum technology; this will be a technology-specific opti-
mization), and accounting for different architectures (which
should be straightforward since each undesirable gate can be
punished with a high cost). Since the template definition is
only based on the properties of matrix multiplication, they
can be applied in any quantum gate library and for any cost
metric.

VIII. CONCLUSION

We have introduced quantum templates and demonstrated
how they can be applied for quantum circuit simplification
and level compaction. Templates can be developed for any
type of quantum circuit and can be applied for various cost
metrics (e.g., simple gate count, weighted gate count, and
nonlinear metrics). We implemented our algorithms in C++
and demonstrated the effectiveness of our approach using a
variety of previously published circuits. In our tests, we first
target gate count minimization and then compact the logic
levels in the simplified circuit. In particular, we reduced the
sizes and number of logic levels in the best known multiple
control Toffoli gate quantum realizations (including multiple
control Toffoli gates with negative controls) and in a number
of arithmetic quantum circuits presented by previous authors.

The consistency of the template definition is based on four
lemmas.

Lemma 1: For any circuit GoG1 - - - Gp,—1 realizing a quan-
tum function f, the circuit G, | G, ' is a realization
for f~1.

Proof: Lemma 1 follows from the properties of matrix
multiplication operation. |

Lemma 2: For any rewriting rule G1Gs- -G —
Gi1Gryz - Grys, its gates satisfy G1Ga---GpGiy,

3"

Gngrsfl"'G;}H =1, where I denotes the identity matrix
(transformation).

Proof: The following set of equalities constructed using
the rule GG! = I for a single gate G proves Lemma 2:

GGy -Gy
= Gry1Gry2 - Grgs
G1G2"'GkGﬁis Zis—l"' E-lu

= Grp+1Gry2 - Gk—I—SG];-}-sG;is—l Gy
GGy -- GkGE}rngis—l e GI;}H
=1.

|

Lemma 3: For an identity GG - - - Gp,—1 and any parame-

terp,0<p<m—1,GoGy-- Gp1 — GG L, G
is a rewriting rule.

Proof: The proof of Lemma 3 follows from Lemma 2
by renaming the subscripts and listing the equalities in reverse
order. ]

Lemma 4: If GoGy1---Gp-1 =1, then Gi---Gp1
Gy = 1.
Proof: The following proves Lemma 4:

GoGy-+- Gy =1
Gy'GoGy -+ Gy =GotI
Gi- G :G61
Gy Gm1Go =Gy'Gy
GGGy =1.
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