
FECS'09 - The 2009 International Conference on Frontiers in Education: Computer Science and Computer Engineering

ARMSim# – a Customizable Simulator
for Exploring the ARM Architecture

R. N. Horspool,  W. Lyons and M. Serra
Department of Computer Science, University of Victoria, Victoria, B.C., Canada V8W 3P6

Abstract  – ARMSim# is a simulator for the ARM architecture
intended for use in both teaching and research. The simulator provides
some standard features found in debuggers such as breakpoints, single-
step execution and watch-points. Its innovative features include support
for software plug-ins which can implement external devices and new
instructions. Such plug-ins can be used to prepare students for working
on actual development boards, and by researchers for experiments with
simulated custom I/O boards and custom extended instructions.
Another powerful feature of ARMSim# is its ability to select a cache
configuration and then observe the cache hit ratios and execution times as
measured in clock cycles

Keywords:  Simulator, ARM, Instruction Set Architecture

1 Introduction
The ARM processor has become a major force, excellent

both as a product and for its associated development tools. It
accounts for a large portion of the design market in embed-
ded systems which represent 90% of all processors sold. It is
important for both students and researchers to be able to
work easily and to experiment with various designs deploying
the ARM and its features. Some texts on computer architec-
ture now cover the ARM, including [1,2]. However, ARM
development boards and the commercial software develop-
ment environments needed to work with the ARM can be rel-
atively expensive, especially for use in undergraduate courses,
and not necessarily suitable. 

The SPIM simulator [3] for MIPS has been extremely
popular for RISC architecture courses, as well as in other
related projects. Our software tool, ARMSim#, was inspired
by SPIM. However it is a total re-design, featuring a powerful
graphical user interface, extra functionality and features not
currently available in most such platforms.

The first function of ARMSim# is indeed to be a power-
ful simulator for the ARM7TDMI architecture. The more
exciting part is the introduction of new features intended to
help instructors and students: These include:
• cache simulation, where the cache characteristics can be

customized for performance experiments;
• program timing measured in clock cycles;

• linking with cross compiled C code;
• compatibility with a commercial ARM-based board for

embedded systems design [4];
• automated testing of ARM programs;
• easily created extra software plug-ins for visual simulation

of custom I/O and for extensions to the user interface;
• ability to introduce custom new ARM instructions.

ARMSim# is implemented in C# and requires the .NET
Framework. It runs on Windows, MacOS and Linux. The lat-
ter two operating systems require the mono implementation
of the .NET framework.

2 The ARMSim# Basic Design
The main functionality of ARMSim# is as a simulator for

ARM programs. In this context it includes assembling, debug-
ging and executing, with the most important goal being ease
of use even for students or users with little experience. A user
simply opens an assembly language source code file, without
having to go through the separate steps of assembling and
linking a program. In accepting source input in this manner, it
follows the SPIM paradigm.

However, ARMSim# can also execute programs com-
posed from multiple files. These files can be either source
code files or object code files (*.o files). The latter are in ARM
Elf format and can be generated by the assembler or the gcc
C compiler included in the CodeSourcery GNU toolchain for
ARM processors [5]. ARMSim# also has the capability of
searching libraries (*.a files) for object code files needed to
define unresolved symbols, in the same manner as a linker.

Although ARMSim# is not primarily intended as a
debugger, it provides many of the same features, including:
• A source code display window which shows the next

instruction to execute; it allows breakpoints to be set on
instructions.

• Various modes of execution – run, step into, step over and
step out.

• Windows which display the register contents, regions of
memory, and an easy-to-interpret dynamically changing
view of the program stack.



FECS'09 - The 2009 International Conference on Frontiers in Education: Computer Science and Computer Engineering

• A watch window for program variables which allows the
user to see the changing contents of data regions of mem-
ory as the user single-steps through the program.

Figure 1 shows a snapshot of ARMSim# in operation,
just after the first instruction of the program has been exe-
cuted in single-step mode. The current instruction, which will
be the next one to be executed, is highlighted in the large
source code window. The window at the left shows the regis-
ters, with the ones changed by the previous instruction dis-
played in red.

In the Windows version of the program, all the windows
are docking windows, customizable for size and placement to
enhance visibility. (Limitations of the mono environment pre-
vent this feature from working on MacOS and Linux.) Effort
has been expended on developing a User Interface which fol-
lows the best guidelines in HCI for GUI and usability criteria,
in order to make the functionalities of ARMSim# be as effec-
tive as possible and extremely user-friendly.

Using these basic capabilities, a student can learn to use
and experiment with the instruction set of the ARM. Input
for the program can be obtained from pre-defined data vari-
ables and results can be stored into memory locations. At the

end of execution, the contents of memory can be observed to
verify that the correct results have been obtained.

For more ambitious and useful coding, ARMSim# pro-
vides predefined system functions, accessed via the ARM swi
(software interrupt) instruction. With them, any program can
read from the keyboard (“stdin”), write text to a separate dis-
play window (“stdout”), perform operations on text files
(open, close, read and write), display messages in alert boxes,
obtain the current internal clock time, and allocate blocks of
storage from the heap. 

The additional features to simulate custom I/O devices
accessed through a bus are described below.

3 Cache Simulation and Timing
Few simulators provide a faithful emulation of the cache,

and development boards do not provide facilities for inspect-
ing the contents of the cache. This is unfortunate because the
cache is often a very difficult concept to understand and
experiment with vis-à-vis performance issues. One of our
goals with ARMSim# was to rectify that omission. By display-
ing the cache contents while a program is being single-

Figure 1. Snapshot of ARMSim# in Operation



FECS'09 - The 2009 International Conference on Frontiers in Education: Computer Science and Computer Engineering

stepped, the ARMSim# can help a student understand what is
going on.

A more advanced user may be more interested in the dif-
ferent possibilities for cache design. Should it have separate I
and D caches, or should they be combined? Should the cache
be direct mapped or set-associative? What line size and set
size should be used? What happens as the cache size is
changed? What replacement strategy is used with set-associa-
tive or fully-associative cache? All these design choices can be
explored with ARMSim#. Moreover ARMSim# provides a

wizard to navigate through them and select a consistent set of
parameters for the cache.

With the cache in operation, the user can stop the pro-
gram at various points to check the cache contents, can watch
the cache updates take place, or can simply run the program
to completion and observe both the cache hit ratio and the
simulated execution time (measured in both clock cycles and
real time).

Figure 2 shows a screen snapshot of the ARMSim#
menu which comes up when setting the parameters of the
data cache.

During and after execution, detailed timing statistics are
also collected. The cycles used in the various modes of execu-
tion provide the data needed to support any future design
decision. Especially when running larger programs, the effect
on performance of the different cache configuration become
apparent through experimentation, yet still within the frame-
work of an easy-to-use interface and engine.

4 Custom I/O Devices and Boards
A processor can be uninteresting when used in isolation;

it needs to be connected to I/O devices before any useful
programming is possible. Although a keyboard and monitor
can be attached via an interface card, it is more likely that
other kinds of devices are used in an embedded system.
Which devices are used and how they are accessed by ARM
instructions depends on the manufacturer of the system.

To provide a high degree of flexibility in system configu-
ration, ARMSim# supports software plug-ins. It is relatively
easy for a course instructor to create a plug-in file as a dll file
located in the same folder as ARMSim#. The plug-in can sim-
ulate buttons, sensors, timers, LED lights, buzzers, etc, to

name just a few of the possibilities. A recent project asked the
students to control the traffic lights at a street intersection
where pedestrian buttons could be pressed and affect the
sequence of lights. The newly designed custom plug-in dis-
played the traffic lights and provided the pedestrian buttons.

The laboratory for the computer architecture course at
the University of Victoria provides ARM development boards
attached to PCs for the students to use. The process of
debugging a program on the board is a frustrating task for a
novice student. The IDE provided with the board itself is
powerful, yet not easy to learn quickly and use effectively,
especially by a novice. We made life much easier for the stu-
dents by implementing a simulated version of the develop-
ment board as a plug-in for ARMSim#. A snapshot of the
actual board and of its simulated equivalent are shown in Fig-
ure 3. The board has a small LCD screen, a keypad with 4
rows and 4 columns, two buttons, an 8-segment LED display,
and two LED lamps. These input and output devices have all
been simulated using controls available with Windows Forms
(i.e. a text window, buttons, and image icons).

Figure 2. Setting the Parameters of the Data Cache



FECS'09 - The 2009 International Conference on Frontiers in Education: Computer Science and Computer Engineering

Figure 3. The Embest Development Board and the Simulated Embest Board

8-segment
Display

LED’s

Buttons

Keypad LCD Screen



FECS'09 - The 2009 International Conference on Frontiers in Education: Computer Science and Computer Engineering

5 Simulating Hardware
Most simulators simply display windows which contain

information about the executing program and in that ARM-
Sim# is similar. However, when a plug-in is created, accesses
to the memory-map are intercepted by ARMSim# and con-
trol is passed to the plug-in callback (delegate). The plug-in
can simulate virtually any type of hardware device that uses
memory-mapped I/O (including hardware timers). Plug-ins
have been written to date to simulate a wide range of hard-
ware. They include the I/O devices of the Embest develop-
ment board, as described above, and the push buttons and
lights of the traffic light simulation.

A powerful feature of the plug-in pattern is the ability for
the end user to extend the functionality of ARMSim# without
requiring modification of the simulator itself. ARMSim# uses
a C# interface that defines the communication between the
simulator engine and the plug-ins. The interface creates a
strict contract that allows the two entities to interact with little
coupling. Future versions of ARMSim# can be published and
users can upgrade without fear of losing the time invested in
developing a plug-in.

6 Extending the ARM Instruction Set
In addition to simulating hardware, plug-ins can also be

developed to simulate new, hypothetical, ARM instructions.
The ARM instruction set has some patterns that are not rec-
ognized by the ARM processor and can be used to define new
instructions [6, page A3-27]. When a new instruction using
one of the unrecognized instruction patterns has been
defined, the ARMSim# engine will intercept any attempt to
execute it and pass control to the responsible plug-in. The
plug-in can inspect the opcode and perform a custom action
for the new instruction.

For example, a plug-in can be written to control a hypo-
thetical 64-bit general purpose register. A set of instructions
can be defined to manipulate this register (add, subtract, mul-
tiply/accumulate, move contents etc). Binary opcode patterns
can be assigned to these new instructions from the pool of
unused opcodes of the ARM instruction set and a plug-in
written to handle these instructions. Once deployed, the
ARMSim# will pass control to the new plug-in every time
one of these new instructions is executed. The plug-in main-
tains an internal 64-bit value and manipulates it based on the
instructions executed. As another convenience, the plug-in
can implement a user interface extension to visualize the 64-
bit register as an extra docking window inside the ARMSim#
user interface.

In addition to defining new instructions for the ARM-
Sim# engine, instruction mnemonics can be inserted into the
parsing tables for the build-in assembler. This allows new
instructions to not only be simulated, but also parsed and
assembled in source code files.

The most important aspect to note in all of the above is
the ease with which the extensions can be developed and con-
figured as part of ARMSim#, without extensive programming
or needing to touch at all the main module.

7 Developing Plug-Ins
Plug-ins are implemented as ordinary .NET assemblies

with types that implement a defined ARMSim# interface. A
developer of a plug-in can use any .NET language in conjunc-
tion with Microsoft Visual Studio to create the assembly.

Since the .NET framework was used as the development
platform of ARMSim#, the Forms services are available to
plug-in writers for user interface extensions. Using the Forms
editor, developers can quickly create user interface elements
to represent simulated hardware.

A starter kit is included with the ARMSim# installer that
allows rapid development of plug-ins within Visual Studio.
The starter kit generates a skeleton plug-in in either C# or
VB.NET with documented interface members and examples
of plug-in implementation. A developer with limited experi-
ence can be up and going developing ARMSim# plug-ins
quickly.

In addition to starter kits, the ARMSim# website has
some example plug-ins that can be studied and used as the
basis for a new plug-in. The use of the Embest board as an
experiential basis has made the main board plug-in the most
natural and useful. Programs which will eventually be down-
loaded to the board can be fully tested with ARMSim# and
the very realistic interface given by the plug-in (without wor-
rying about key bounces, for example). After the final version
is finished, the code can be imported into the IDE used for
developing programs for the hardware board, the program
can be compiled and the executable file downloaded to the
board for execution.

8 Use of ARMSim#

8.1. In the Classroom

We have deployed ARMSim# in the course laboratory
and have made the program available to students for installa-
tion on their own computers. Allowing students to have their
own copies of ARMSim# reduces pressure on laboratory
resources while also being a great convenience. 

While the design and use of ARMSim# in a course is
mainly aimed towards pedagogical goals, it also has extra fea-
tures incorporated to simplify life for the instructor. 
1. ARMSim# can be executed as a batch program with a

script that can check the contents of memory locations in
the ARM program at the end of execution. This permits an
instructor to automate the testing of submitted code.

2. The instructor can pre-compile C subroutines or pre-



FECS'09 - The 2009 International Conference on Frontiers in Education: Computer Science and Computer Engineering

assemble ARM source code subroutines and package them
in an archive library. Students can use these subroutines in
their programs.

8.2. For Research and Experimentation

Any IDE or simulator can be obviously used in many
domains for a variety of purposes. An ARM simulator could
indeed confine itself to the compilation and execution of
appropriate programs, together with all sorts of extra features
to support the development environment. Its use in research
may be seen as simply one of the many tools. 

It is important to emphasize though that the extra fea-
tures of ARMSim# related to the cache manipulation and to
the timing statistics can be an extremely useful asset in
research experiments and in case studies for higher level
learning environments. Few simulators provide such support
(SPIM doesn’t) and certainly not with the same level of flexi-
bility and ease for configuration.

9 Conclusions
ARMSim# has been in use for more than two years at the

University of Victoria in a Computer Science course which is
offered 3 times per year. The students learn the basic ARM
assembly language and C programming, and combinations of
the two in a single program in the labs attached to the intro-
ductory course on computer architecture. The hands-on prac-
tice at the low level enhances the understanding of concepts
for computer organization and system architecture. An archi-
tectural variant of the ARM known as ARM7TDMI is sup-
ported, as well as Vector Floating Point (VFP) instructions. It
is an extremely useful instrument to convey most of the con-
cepts of architecture together with practical implementations
and developments.

Simulation is not always a substitute for the real thing. If
boards and IDE’s can be purchased, they can be great learn-
ing tools, yet sometimes it takes a while to become familiar
with a commercial IDE. The great advantage of ARMSim# is
that it is easily extended to display a simulated development

board functioning exactly like the real thing. Even when
actual boards are available (as in our course), it is valuable to
gain experience and verify correctness first with the simulator,
before tackling the added complexity of a commercial devel-
opment environment, the frustrations of cross-compiling and
the sometimes tricky steps of downloading to the real board. 

Moreover being able to attach a plug-in representing a
more interesting (or fun) interface can bring added value to a
course. In the example of a traffic light controller, the func-
tionality was expressed effectively through the use of black
and blue buttons, blinking LED lights and the 8-segment
LED display. However the (fun) graphical plug-in which
showed a simulated traffic light using the same swi instruc-
tions for controlling the light’s operation made for a more
realistic project. It was a project which indeed seemed much
closer to a real embedded control system, even for novice
users.

The ARMSim# program is freely available for academic
use by contacting the authors of this paper and following the
links from their web pages.

10 References
[1] C. Hamacher, Z. Vranesic, S. Zaky, Computer Organization,
fifth edition. McGraw-Hill, 2002.
[2] A. Clements, Principles of Computer Hardware, fourth edi-
tion. Oxford University Press, 2006.
[3] J. Larus. SPIM – A MIPS32 Simulator. URL: http://
pages.cs.wisc.edu/~larus/spim.html
(checked 24 Feb 2009).
[4] Embest Info & Tech Co., Ltd. Embest S3CEV40 Evalua-
tion Board. URL: http://www.armkits.com/prod-
uct/s3cev40.asp (checked 24 Feb 2009).
[5] CodeSourcery. GNU Toolchain for ARM Processors.
URL: http://www.codesourcery.com/sgpp/
lite/arm/ (checked 24 Feb 2009).
[6] D. Seal (editor). ARM Architecture Reference Manual, sec-
ond edition. Addison-Wesley, 2001.


