
Expeditious XML processing 

Kelvin Yeow1, Nigel Horspool2, and Michael Levy3 

 

 

Abstract 

The efficiency of an XML processor is highly dependent on the 
representation of the XML document in the computer's memory. We present 
a representation for XML documents, derived from Warren's representation 
of Prolog terms in WAM, which permits very efficient access and update 
operations. Our scheme is implemented in CXMLParser, a non-validating 
XML processor.  We present the results of a performance comparison with 
two other XML processors which show that CXMLParser meets its high-
performance goal. 
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Expeditious XML processing 

INTRODUCTION 

An XML processor is a software module that usually exists within a larger system. An 
XML processor provides the facility to access, modify, parse or create an XML 
document, usually through the API (Application Program Interface). The core data 
structure of an XML processor is its representation of the XML document. The efficiency 
of an XML processor is critically dependent on this representation. 

There are many ways an XML document can be represented. After all, it is a general tree, 
where open and close tags delimit subtrees. The choice of representation depends on the 
context of use and on various performance trade-offs. 

We present CXMLParser, a non-validating XML processor based on the techniques used 
in WAM (Warren Abstract Machine). CXMLParser is implemented in C++. It conforms 
to the W3C XML 1.0 Recommendation [7], specifically the well-formedness constraint. 
The conformance is exercised to a limited extent but sufficient for the proof of concept. It 
recognises the three common XML constructs: attributes, elements and text data. The 
sequential memory technique for representing the XML document originates from 
Warren's representation of terms in WAM. We adapted the technique to cater for runtime 
insertion and deletion. 

To gauge the relative time efficiency of CXMLParser, we conducted a performance 
comparison with two other XML processors. The two candidate XML processors are 
Xerces C++ (Apache XML project) [5] and XML4J implemented in Java (IBM 
alphaWorks) [6]. The performance comparison tests four common operations: parse, 
delete, insert and traverse on three distinct sized XML documents. We present the 
methodology and the results of the performance comparison. 

BACKGROUND 

In this section, we discuss the correlation of XML, WAM, and general tree – which 
serves to illustrate the direction of our approach that warrants the implementation of 
CXMLParser. 
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XML as a general tree 

An XML document contains data and the relationship between data. The relationship 
between data is expressed by means of nesting. The inherent hierarchical structure of an 
XML document can be likened to the tree structure.  

A tree structure describes branching relationship between nodes [1]. A node is the atomic 
unit of a tree. Further, the relationships between nodes are described in terminologies 
borrowed from biological trees [2]. The root of a tree is the single node having no parent 
node. For any other given nodes, the node immediately above it is known as its parent 
and the nodes directly below it are its children. A tree is also called a general tree to 
distinguish it from more specialized kinds of trees. Any node in a general tree can have 
zero or more children. We will use the terms general tree and tree interchangeably in the 
rest of this paper. 

There are many ways a general tree can be represented inside a computer. The type of 
representation is determined by the way the relationship or edge is established and the 
way the memory is allocated for the storage of the data. 

The edges are established either implicitly or explicitly. Implicit edges are established 
through adjacency. The sequential memory representation of a binary tree that uses 
implicit edges allows a parent node to have direct access to its left and right child through 
the index of the parent node [2]. Implicit edges consume no space but it requires the arity 
be known a priori. In the case of a binary tree, there will be wastage if the tree is 
unbalance. Explicit edges are established through pointers similar to the linked-list data 
structure. Explicit edges consume more space but it is more intuitive and allows for 
efficient insertion. 

There are two memory allocation techniques: sequential memory and dynamically 
allocated memory. The term dynamic implies non-contiguous memory locations for 
nodes whereas the term sequential implies contiguous memory locations for nodes. The 
dynamically allocated memory techniques allow for efficient insert and delete operations. 
However, as the term dynamic implies, the memory is allocated on need and individual 
basis. On some machines, it involves the operating system intervention. It is a double-
edge sword – a parser, for a XML document that receives a stream of characters as input, 
will need to invoke memory allocation for every instance of a recognized node – a 
potentially expensive alternative compared to the sequential memory techniques. On the 
other hand, the sequential memory techniques are cumbersome if the tree structure is 
subjected to changes in shape and size at runtime.  
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Warren’s representation of terms 

In 1983, David H. D. Warren designed an abstract machine for the execution of Prolog 
consisting of a memory architecture and an instruction set [3]. The memory architecture 
thrives on terms. A term is either a variable, constant or structure. Of particular interest is 
the representation of the term structure in the form of ƒ(t1, ..., tn) where ƒ is a symbol 
called a functor, and the ti's are the subterms. The number of subterms for a given functor 
is predetermined and called its arity. Recursively, a subterm can be a variable, constant or 
structure. To recapitulate this in the context of a tree structure, a non-leaf node and its 
children can be viewed as a functor and its subterms respectively. The number of children 
of a parent node is then known as its arity. 

As part of the illustration of the WAM memory architecture with respect to XML, we 
define a simplified representation for terms consisting of a global block of storage in the 
form of an addressable heap called HEAP, which is an array of data cells. A heap cell’s 
address is its index in the array HEAP. There are two types of data to be stored in HEAP: 
constant (denoted by a capitalized identifier) and structure (denoted by an identifier 
starting with a lower-case letter).  

The heap format used for representing a structure ƒ(t1, ..., tn) will consist of n + 2 
contiguous heap cells. The first two of these n + 2 cells stores the functor and its arity. 
The n other cells contain references to the root of the n subterms in proper order. If 
HEAP[ k ] = f then HEAP[ k + 1 ] will refer to its arity. Hence, HEAP[ k + 2 ] will refer 
to the first subterm t1 and HEAP[ k + n + 1] will refer to the n-th (and last) subterm tn. 

Figure 1 shows the postorder heap representation of the functor ƒ(A, g(B, C, D) ) that 
starts at the root, f. Here A, B, C and D are the constants. ƒ and g are the functors. It is 
interesting to note that this technique has a combination of implicit and explicit edges. 
The cells that contain the constants need not be contiguous while the references to the 
constants belonging to a structure are strictly contiguous. Traversals are guided by the 
arity. Note that the illustrations have been simplified to suit the context of discussion and 
may not mirror Aït-Kaci’s [3] illustrations. 

 

 

 HEAP  D 2 f     3 g B C A 

 

Figure 1.  The postorder heap representation of the functor ƒ(A, g(B, C, D)) 
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A term as a general tree 

A term in WAM is similar to a general tree. The term structure is a parent node. The term 
constants are the leaf nodes. The representation of a term in WAM is a form of sequential 
memory technique. One attractive property of this representation is that a parent node has 
direct access to its children nodes. However, this technique assumes that the arity is 
static; hence, it is particularly inadequate for insertion at runtime. We will show how this 
technique can be extended to overcome this limitation under the implementation section. 

XML as a term 

It then follows that any XML document can be expressed in a similar fashion. The XML 
element corresponds to the term structure. The XML attribute corresponds to a term 
structure with an arity of two at all times – a key and value pair. The text node 
corresponds to the term constant. 

ALTERNATIVE REPRESENTATIONS 

There are a number of well-documented general tree representations applicable to the 
XML document. The differences between the representations manifest in the way the 
relationship is established and the way the memory is allocated for the storage of the data. 
We review them here in the context of the effort required to perform common operations 
such as insert, delete, and access by position. 

First Child - Right Sibling (FCRS) 
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Figure 2.  First Child - Right Sibling 
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This representation uses explicit edges to establish relationship between the nodes. The 
data of each node is stored in a dynamically allocated memory. This representation is 
similar to the linked representation of a binary tree. Each tree node contains its data, a 
pointer to its first child and a pointer to its right sibling. If a node has a null First Child, it 
is a leaf node. With the exception of the root node, a node with a null Right Sibling is the 
last child of its parent node. The amount of storage space for n nodes is 3n.  

Postorder with Degrees (PWD) 

This representation uses implicit edges to establish relationship between the nodes. The 
data storage is in the form of sequential memory. Each tree node contains the data and its 
degree. The degree of a node is the number of subtrees of the node [1]. The amount of 
storage space for n nodes is 2n. 

 
D0 f 3 g 2 0 0 C 0 B A

 

Figure 3.  Postorder with Degrees 

List of Children (LOC) 

This representation uses explicit edges to establish relationship between the nodes. Each 
tree node contains data and a list of pointers to its children nodes. The main physical 
structure is usually an array while the list of pointers to children nodes is a singly linked-
list. The amount of storage space for n nodes is 4n – 2.  
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Figure 4.  List of Children 
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Discussion of alternatives 

The usage of explicit edges in FCRS and LOC allows for efficient insertion and deletion 
especially on individual basis during runtime. However, during a parse operation, 
frequent calls for memory allocation can be expensive. Table 1 shows the order of 
magnitude of effort required for basic operations on each representation. 

 

Operations \ Representations FCRS PWD LOC 

Insertion O(1) N/A O(1)

Deletion O(1) N/A O(1)

Access by position O(n) O(1) O(n)

Table 1.    Orders of magnitude of effort required to perform basic operations 

 

Our technique closely resembles PWD. The variation lies in the location of the children 
nodes. PWD requires the children nodes to be adjacent while our technique keeps track of 
the children nodes through the children node pointers.  

IMPLEMENTATION 

This section consists of three parts: first, we describe the core data structure of 
CXMLParser. We then describe the nodes recognized by CXMLParser and their 
representation. Based on the data structure, we describe four operations: insert, delete, 
parse and traverse. In this section, the data will be termed as the character literals and the 
relationship between data will be termed as the structure. 

Core Data Structure 

The structure of the XML document will be stored in a block of contiguous memory in 
the form of an oversized integer array. The character literals of the XML document are 
stored in an oversized character array. Throughout the rest of this paper, the integer array 
and the character array will be known as HEAP and CHAR respectively.  

For each array, a stack pointer points to the next available cell for consumption. The stack 
pointers are assumed to point to the next available cell at the end of the used portions of 
the array. Hence, they will not be shown in the diagrams. 
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Figure 5.  Representation of (a) a text node, (b) an attribute node, (c) an element node,  
(d) a redirection node, and (e) an example of an XML document in CXMLParser 

There are four types of node: text, attribute, element, and redirection. The type of the 
node will be encoded in the HEAP using an enumeration type constant.  

The text node consists of its literals stored in CHAR and its structure stored in HEAP. 
The heap format used for representing a text node consists of 3 contiguous heap cells as 
shown in Figure 5(a). The contiguous cells store the type of the node denoted by T for 
text node, a pointer to the first character of its literal in CHAR, and the number of 
characters (or length). 
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An attribute has a key and its associated value; both the key and the value are represented 
as the text nodes. An attribute node has two child nodes at any instance. The heap format 
used for representing an attribute will consist of 3 contiguous heap cells as shown in 
Figure 5(b). The contiguous cells store the type of the node denoted by A for attribute, a 
pointer to the key and a pointer to the value. If HEAP[ k ] = id then HEAP[ k + 1 ] 
contains the pointer to the key and HEAP[ k + 2 ] contains the pointer to the value. 

An element is denoted by an open and close tag. The content of an element node can be 
other elements, attributes or a text node. The heap format used for representing an 
element will consist of n + 3 contiguous heap cells as shown in Figure 5(c). The first two 
of these n + 3 cells stores the type of node denoted by E for element, a pointer to its tag 
name and arity. The n other cells contain references to the root of the n children nodes. If 
HEAP[ k ] = a then HEAP[ k + 1 ] contains the pointer to the tag name and HEAP [ k + 2 
] contains the arity of the element. Hence, HEAP[ k + 3 ] contains the  pointer to the first 
child node and HEAP[ k + n + 2] contains the pointer to the n-th (and last) child node. 

A redirection node allows the element nodes to relocate during an insertion. A redirection 
node consists of the type of the node denoted by R for redirection and a pointer to the 
relocated element as shown in Figure 5(d).  

Figure 5(e) shows an example of an XML document and its representation in HEAP and 
CHAR. Figure 6 shows the usage of the redirection node during an insertion. 

Operations 

The arity of a term must be known before building its representation on the heap. In 
addition, once built, the arity is assumed static. This implies that the technique for 
representing the terms in WAM is not meant for modification of the tree at runtime 
whether in shape or size.  

Depending on applications, a generic XML processor should allow for modifications at 
runtime. In the case of an insertion, we observe that if a child node is inserted at runtime, 
the changes to HEAP should be (1) the arity of the parent node increases by one and (2) 
an additional pointer to the new child node is needed. While (1) s a simple increment, (2) 
requires an additional adjacent cell. Instead of moving all cells to the right by one, our 
solution is to copy and append the structure of the parent node to HEAP, and place a 
redirection node at the previous location so that any references to the previous location 
can be redirected to the new location. Figure 6(a) and 6(b) show the state of HEAP and 
CHAR before and after inserting a node to an element. 
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Figure 6.  The state of the HEAP (a) before and (b) after an insertion 

A redirection node requires two cells. Any request for the parent node through the 
previous location will be redirected to the new location. The immediate failing of this 
method is that the redirection process can be expensive if the parent node is relocated (i.e. 
insertion) frequently. For example, if 5000 nodes are added to the same parent node, a 
request for the parent node through the initial location requires processing 5000 
redirections. Our solution to this problem is to process the redirection once and update the 
requester. This lazy approach makes best use of the redirection technique, which is a 
singly linked-list.  

Deletion is achieved by decrementing the arity of the parent node. Continuing from the 
insertion example, Figure 7 shows the state of the HEAP after removing the newly added 
child node. If the removed child node is not the last child in the list, then move all 
subsequent child pointers one cell to the left. 

 

First child 
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the element 
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Figure 7.  The state of the HEAP after a deletion 

The parse operation is a pushdown automaton. The XML document is copied into the 
memory as CHAR and then annotated. The parse operation is fast because our technique 
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minimizes memory allocation calls on two fronts: both HEAP and CHAR are allocated 
once.  

The tree traversal operation is guided by the arity of each element nodes. An iteration 
through the children nodes of an element always starts at HEAP[ k + 3 ] through to 
HEAP[ k + n + 2 ] where k is the index of the element in HEAP and n is the arity of the 
element. Our technique allows direct access to any children nodes from the parent node.  

PERFORMANCE TESTING AND COMPARISON 

Input 

The three XML documents used for the performance testing are small.xml, medium.xml 
and big.xml. The goal was to emulate a table with records and data fields. The following 
shows a snapshot of small.xml: 

<r> 
  <record> 
    <name>foo</name> 
    <tel>123456789</tel> 
    <height>170</height> 
    <weight>100</weight> 
    <language>english</language> 
    <alphabets>abcdefghijklmnopqrstuvwxyz</alphabets> 
  </record> 
  … 
</r> 

The three documents differ by the number of records. The tree height is three for all of 
the XML documents. Table 2 shows the properties of the three XML documents. 

 

 small.xml medium.xml big.xml 

Size in bytes 103,012 1,030,012 5,150,012

Number of records 500 5,000 25,000

Total leaf nodes 3,000 30,000 150,000

Table 2.    The properties of the three XML documents 
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Operations 

Delete Parse file 
Start timer 
Get root node 
For each record 
  For each field 
    Remove field from record 
  Remove record from root 
Stop timer 

Insert Start timer 
Initialize document object 
Get root node 
For 1 to Number of records 
  Create record 
  Create fields 
  Link fields to record 
  Link record to root 
Stop timer 

Parse Start timer 
Parse file 
Stop timer 

Traverse Parse file 
Start timer 
Get root node 
For each record 
  For each field 
    If field = “name” AND if field.getText() =”mambo” 
      break 
Stop timer 

Table 3.    The pseudocode of each of the operation 

Four operations were tested: delete, insert, parse and traverse operations. These 
operations are applied to the three XML documents. Table 3 describes the operations in 
details. 

Environment 

The performance test was run on a Pentium III 650 Windows 2000 machine with 128 MB 
RAM and a virtual memory of 192 MB. No background activity was demanded from the 
CPU while the tests were conducted. The C++ compiler used is Microsoft Visual C++ 
version 6.0 Enterprise Edition. The Java interpreter and virtual machine are bundled as 
Java 2 SDK version 1.3.1. 

11 



XML Processors 

The version of Xerces-C and XML4J used is 1.4 and 1.1.16 respectively. All of the XML 
processors were run in non-validating mode with namespace processing disabled. In 
addition, the XML processors were required to build a tree representation of the XML 
document. The performance was measured with the _ftime() function available from 
time.h while in Java, the System.currentTimeMillis() function was used.  

Results 

CXMLParser Xerces-C++ XML4J  

ms byte/ms ms byte/ms ms byte/ms 

small.xml 3 34337 20 5151 33 3122

medium.xml 200 5150 264 3902 381 2703

big.xml 4573 1126 2526 2039 7033 732

Table 4.    The time performance of the delete operation 

 
CXMLParser Xerces-C++ XML4J  

ms byte/ms ms byte/ms ms byte/ms 

small.xml 20 5151 40 2575 160 644

medium.xml 1182 871 377 2732 951 1083

big.xml N/A N/A 1900 2711 4757 1083

Table 5.    The time performance of the insert operation 

 
CXMLParser Xerces-C++ XML4J  

ms byte/ms ms byte/ms ms byte/ms 

small.xml 17 6060 73 1411 367 281

medium.xml 130 7923 748 1377 2510 410

big.xml 691 7453 3825 1346 11443 450

Table 6.    The time performance of the parse operation 
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CXMLParser Xerces-C++ XML4J  

ms byte/ms ms byte/ms ms byte/ms 

small.xml 7 14716 10 10301 17 6060

medium.xml 60 17167 130 7923 80 12875

big.xml 337 15282 664 7756 317 16246

Table 7.    The time performance of the traverse operation 

Discussions of results 

The design goal of CXMLParser is to be fast at the expense of memory. We have proven 
that our technique is fast for insert, parse, delete and traverse operations. The declining 
cost of memory allows us to place higher premium on speed. The result for insertion 
shows that CXMLParser is very fast for small input, slower as input size increases and 
unacceptable for large input. An impromptu investigation was conducted to confirm the 
cause for poor performance in processing medium.xml for insertion. About 60-68% of the 
total time was spent on reallocation of HEAP while 28-35% of the total time was spent on 
transferring the parent node from the old to the new location within HEAP. 

FUTURE WORK 

CXMLParser can be improved on two fronts: memory consumption and minimizing 
movement of the parent node during insertion.  

The pattern of memory consumption eventually affects the time performance as we 
observed the results of insertion in medium.xml and large.xml. When there is insufficient 
space in HEAP, it will be reallocated to twice the previous size. This reallocation must be 
minimised. An immediate solution to this is to implement a list of multi-sized free cells. 
Knuth [1] describes a dynamic storage allocation algorithm for reserving and freeing 
variable-size blocks of memory from a larger storage area. This algorithm is then refined 
into different placement strategies such as best fit, first fit and liberation. 

The observation of HEAP reveals that the only change to a parent node during an 
insertion is an additional pointer to the new child. Instead of moving all cells on the right 
by one, we choose to relocate the parent node to the next available space in HEAP. This 
process of relocating is expensive if insertions are done in batches. There are many ways 
to reduce or prevent the parent nodes from relocating. A linked-list of child pointers can 
be incorporated without relocating the parent node. This can be achieved by including a 
redirection flag that redirects to the new child pointer of the parent node. 
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One of the advantages of our technique is the direct access of any children nodes from the 
parent node if the position of the child node relative to the parent node is known. This 
advantage can be potentially useful if CXMLParser supports validation. With the schema 
(i.e. DTD or XML Schema), direct access is possible via tag names without going 
through each children node. 

CONCLUSION 

CXMLParser performs at comparable speed for all of the tested operations. CXMLParser 
is not a finished product; our intention is to prove that our technique for representing the 
XML document is time efficient. We have provided the proof of concept. The outcome of 
the performance testing proves that the compact representation of the terms, as first 
conceived by Warren, can be improvised to represent the XML document while 
preserving the efficiency.  
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