
The Effect of Non-Greedy Parsing
in Ziv-Lempel Compression Methods

R. Nigel Horspool
Dept. of Computer Science, University of Victoria
P. O. Box 3055, Victoria, B.C., Canada V8W 3P6

E-mail address:nigelh@csr.uvic.ca

Most practical compression methods in the LZ77 and LZ78
families parse their input using a greedy heuristic. However
the popular gzip compression program demonstrates that
modest but significant gains in compression performance
are possible if non-greedy parsing is used. Practical
implementations for using non-greedy parsing in LZ77 and
LZ78 compression are explored and some experimental
measurements are presented.

1 Introduction

All the compression methods in the LZ77 and LZ78 families are based on the principle
that strings of symbols tend to recur. By identifying the repeated strings and replacing
them with short codes, data compression may be achieved. Methods in the LZ77 family
may be broadly characterized as maintaining a buffer, or sliding window, which contains
the most recently read N bytes of data. Sequences of new data symbols are encoded as ref-
erences into the buffer where indentical sequences of symbols may be found. The various
LZ77 methods differ, amongst other things, on how the buffer search is implemented and
on how to encode symbols that do not appear in the buffer. Methods in the LZ78 family
are dictionary-based, where a subset of the symbol sequences encountered in the data so
far have been selected for inclusion in the dictionary. Sequences of new data symbols are
looked up in the dictionary and, if found, encoded as indexes into the dictionary. The LZ78
methods differ according to how the dictionary is dynamically updated and how to encode
dictionary indexes. A survey of the major LZ77 and LZ78 variants appears in [1]. The
original descriptions of the two methods are [10] for LZ77 and [11] for LZ78.

With either family of methods, the input is decomposed into a series of substrings
where each substring is encoded separately. There is much freedom possible, perhaps too
much freedom, in how the input should be decomposed into strings. As a major simplifica-
tion, and because it is an easily implemented approach that achieves excellent results, a
greedy parsing approach is commonly used [2]. For the LZ77 class of methods, this means
that the compression program always attempts to match the longest possible sequence of
symbols, starting at the first un-encoded input symbol, against the contents of the buffer.
The program ignores the possibility of matching some shorter sequence so that a longer

subsequent string will be matched or that a better encoding may be achieved. Similarly for
LZ78 methods, using a shorter string in the dictionary to encode the first few input sym-
bols may open the possibility of obtaining better encodings for the following input.

On the whole, the greedy heuristic works very well. Some authors have suggested
that it is the only realistic approach for practical text compression applications [4] [6].
However, it appears that this conclusion is the result of a binary choice between greedy
parsing and optimal parsing. We should still consider the possibility that there may be heu-
ristic non-greedy parsing strategies which achieve sub-optimal, but good, results and are
easy to implement. Indeed, the widely usedgzip program [3], a compression method in
the LZ77 family and distributed by the Free Software Foundation, uses a simple non-
greedy strategy. It was this observation that motivated the investigations reported in this
paper.

First, we consider how we might modify the parsing the LZW/LZC compression
method, the most popular LZ78 variant. Then we look at modifying the LZSS compres-
sion scheme, which appears to be the most popular method in the LZ77 family.

2 A Non-Greedy Parsing Version of LZW/LZC

LZW was first presented as a compression method suitable for implementation in hard-
ware [8]. Later, a software version was widely distributed as thecompress program.
Because the compress program contains some extra features not described in the original
LZW paper, compress is sometimes referred to as the LZC algorithm. More recently, a
modified version of LZW has become part of the V.42bis standard for modems.

A Brief Description of LZW/LZC

LZW is an adaptive technique. As the compression algorithm runs, a changing dictionary
of (some of) the strings that have appeared in the text so far is maintained. Because the
dictionary is pre-loaded with the 256 different codes that may appear in a byte, it is guar-
anteed that the entire input source may be converted into a series of dictionary indexes. If
α andβ are two strings that are held in the dictionary, the character sequenceαβ is con-
verted into the index ofα followed by the index ofβ. A greedy string matching algorithm
is used for scanning the input, so if the first character ofβ is x, thenαx cannot be an ele-
ment of the dictionary. The adaptive nature of the algorithm is due to that fact thatαx is
automatically added to the dictionary ifα is matched butαx is not matched. The algorithm
maintains the prefix property – namely, ifαx is a string in the dictionary, thenα must be
held in the dictionary also. This enables an entry for ann character string in the dictionary
(n>1) to be encoded as a pair<s,x> wheres is the number of then–1 character prefix and
x is the final character. The LZC implementation uses hashing to store and to look up the
<s,x> pairs efficiently.

When the dictionary has filled up, LZW becomes non-adaptive – it compresses
using an unchanging dictionary. LZC, on the other hand, monitors the compression ratio
after the dictionary has filled. If the ratio starts to worsen, the dictionary is re-initialized,

thus restarting the compression algorithm. A special code (an otherwise unused string
number) is output so that the decoding algorithm will re-initialize its dictionary at the
same point. This enhancement is highly effective on heterogenous files (composed of sec-
tions with different characteristics) such as executable files.

In the remainder of this paper, the abbreviation LZW will be used to cover both
Welch’s version of LZ78 and the LZC variant.

Adding Non-Greedy Parsing to LZW

The simple example shown in Figure 1 illustrates the parsing possibilities available to
LZW when it is about to read a new series of symbols from the input.

If the longest matching string is “abcdefg”, then LZW would normally output the index of
that string, update the dictionary, and then proceed to find another longest matching string
(shown here as a string beginning “hijk...”). However, a non-greedy version of LZW could
decide to match a shorter string, as shown for example in line 2. If a following string (a
string beginning “ghij...” in Figure 1) that is significantly longer than the second string in
line 1 can then be matched, the overall compression performance will be improved. Even
shorter initial strings may be matched, as in lines 3 and after, and could achieve even better
compression performance when subsequent matching strings are considered.

An optimal parsing scheme would also have to consider the possibility of matching
a short first string and then a short second string in order to match a very long third string,
and so on. We will however reject such possibilities as being too expensive to implement
(for minimal expected gain in compression performance). Our non-greedy version of
LZW will only look ahead by one parsed string when choosing its course of action.

The adaptive nature of LZW causes a problem with non-greedy parsing. The usual
method of updating the dictionary is to create a new string by appending the first symbol
of the next string to the current string. When greedy parsing is used, this new string is
guaranteed not to be already present in the dictionary. With non-greedy parsing, the guar-
antee is lost. Just examine line 2 in Figure 1: if we append ‘g’ to the string ‘abcdef’, we
create the string that is matched in line 1 and is hence a member of the dictionary. So,
should we add a new string to the dictionary in this case? And, if so, which string should

a b c d e f g

a b c d e f

a b c d e

h i j k ...

g h i j ...

f g h i ...

1.

2.

3.

etc.
Figure 1 Example of Non-Greedy Parsing for LZW

be added? Another consideration is that the decompression program must be able deduce
which strings to add to its own dictionary and when.

At least two solutions to the dictionary update problem present themselves. Per-
haps the easiest solution is to skip the dictionary update. Whenever the compression pro-
gram uses a non-greedy match, no string is added to the dictionary. Unfortunately, as the
experimental results will show, the easy solution does not yield acceptable compression
performance and we cannot recommend it for a useful implementation. Our second solu-
tion is to update the dictionary as though the greedy match were being used. For example,
even if the compression program decides to use the match of line 3 in Figure 1, it will still
add the new string ‘abcdefgh’ to the dictionary – the same string that would have been
added if the greedy matching of line 1 had been used. Using this second solution, the over-
all algorithm for a non-greedy version of LZW is as shown in Figure 2. In this figure, the
notationα++b represents the new string formed by appending one characterb to the
stringα, the functionlength(α) returns the length of the stringα, the function
head(α) returns the first symbol of a stringα, and the functionprefix(α,i) returns
a substring composed of the firsti symbols of the stringα. The valueK that appears in the
code is a parameter that limits the number of non-greedy parsing possibilities considered
at each step

The decompression program for LZW has a minor anomaly, named theΚωΚωΚ
problem. This anomaly occurs if the decompression program reads a dictionary index for a
string that has not yet been added to the dictionary. However, Welch argues that there is
only one circumstance when this can arise, namely when the compression program has

initialize dictionary D with all strings of length 1;
set α = the string in D that matches the first

symbol of the input;
set L = length(α);
while more than L symbols of input remain do
begin

for j := 0 to max(L-1,K) do
find βj , the longest string in D that matches

the input starting L-j symbols ahead;
add the new string α++head(β0) to D;
set j = value of j in range 0 to max(L-1,K)

such that L - j + length(βj) is a maximum;
output the index in D of the string prefix(α,j);
advance j symbols through the input;
set α = βj ;
set L = length(α);

end ;
output the index in D of string α;

Figure 2 The Non-Greedy LZW Compression Algorithm

used a new string immediately after adding that string to the dictionary. If the string previ-
ously matched has the formΚω whereΚ represents any single symbol andω represents a
series of zero or more symbols, then the new string must have the formΚωΚ. The decom-
pression program has to check for this anomaly occurring and, when it does, construct and
output theΚωΚ string. A similar anomaly is possible for our non-greedy version of LZW.
The decompression algorithm shown below in Figure 3 takes it into account. In the figure,
the functiontail(α) returns the string formed by dropping the first symbol ofα. The
nestedwhile loop constructs the new string that the normal (greedy) version of LZW
would add to its dictionary at this step. We leave it as an exercise to the reader to verify
that (1) the correct string is constructed, and (2) that thewhile loop must always terminate
before thehead function is applied to an empty string.

Experimental Results with Non-Greedy LZW

The algorithms outlined in Figures 2 and 3 were implemented as C programs. Two of the
larger Unix command descriptions in the on-line manual were used as samples of typical
text input. A data file containing digitized ECG readings and converted to ASCII charac-
ters was used as a third test input. This data file is highly compressible because of the
small set of ASCII characters used in the file.

initialize dictionary D with all strings of length 1;
set A = dictionary index read from input;
forever do
begin

set α = string in D with index A;
output α;
if no more input remains then exit;
set B = next dictionary index read from input;
if B is a valid index for D then

set β = string in D with index B;
else /* handle the ΚωΚωΚ anomaly */

set β = string in D with index A;
while α++head(β) is a string in D do
begin

set α = α++head(β);
set β = tail(β);

end ;
add the new string α++head(β) to D;
set A = B;

end

Figure 3 The Non-Greedy LZW De-Compression Algorithm

The compression results are displayed in Table 1 below. All compression figures
are reported as the ratio between the sizes of the compressed file and the original file. The
parameter K represents the number of non-greedy parsing choices being considered at
each compression step (in addition to the normal LZW greedy choice). As may be
expected, the degree of compression improves as K is increased. When K=0, the conven-
tional LZW compression method is being used. Almost all the compression improvement
has been achieved when K has reached 3. It is interesting to observe how much benefit can
be attributed to each choice in the non-greedy parse. Table 2, below, shows the average
benefits that are observed for the compression run using the ‘csh’ input file with K=8. The
entry for the row with j=3, for example, tells us that the compression program chose to
match a string three bytes shorter than the maximum possible on 305 occasions. (That is,
there were 305 occasions when the assignment statement “set j = ...” in Figure 2
assigned three toj .) When averaged over these 305 occasions, the algorithm would have
been able to match 6.25 more bytes for the next string match (if greedy parsing were actu-
ally used for that next match) than for the subsequent string match in the normal greedy
parsing case. Reducing the 6.25 by three because of the shorter first match yields the net
gain of 3.25 shown in the table.

As mentioned earlier, there is an alternative and simpler strategy for updating the
dictionary. Instead of performing the additional work of determining which string would
have been added if the usual greedy implementation of LZW were used and adding that
string, we could suppress the addition whenever the match is not a greedy match. How-
ever, that strategy turns out to produce significantly worse compression performance. Here
are a few examples to be compared against the figures in Table 1. The compression for
K=3 with the ‘csh’ example turns out to be 40.9%; for the ‘make’ example it is 42.0%; for
the ECG data, it is 17.4%. Clearly, the dictionary does not grow sufficiently fast to achieve
good compression. Perhaps a strategy of accelerating the loading of new strings into the
dictionary, such as the ‘All-Prefixes’ heuristic [7] or similar [5], would help.

Table 1: Compression Performance of Non-Greedy LZW

K parameter 0 1 2 3 4 5 6 7 8

‘csh’ description 41.0% 39.0% 38.1% 37.7% 37.6% 37.5% 37.5% 37.4% 37.4%

‘make’ description42.7% 40.5% 39.5% 39.2% 39.1% 39.1% 39.0% 39.0% 39.0%

ECG data 9.7% 8.8% 8.3% 7.8% 7.7% 7.6% 7.5% 7.4% 7.4%

Table 2: Benefits from Non-Greedy Parsing with LZW

Backup valuej 0 1 2 3 4 5 6 7 8

No. of
occurrences

13392 2478 855 305 115 65 31 18 6

Average gain
(bytes)

— 3.02 3.12 3.25 3.32 4.65 4.68 5.67 4.00

3 A Non-Greedy Parsing Version of LZSS

The LZ77 methods encodes an input string by finding an occurrence of that string in its
history buffer and outputs a position/length pair that identifies the occurrence. In the origi-
nal formulation of LZ77, Ziv and Lempel proposed that the position/length pair should be
immediately followed in the output by a copy of the next input symbol. This guarantees
that input symbols can be encoded even when there are no occurrences of the same symbol
in the buffer. The compression performance can be significantly improved by allowing the
output stream to consist of a free mixture of position/length pairs and unencoded (literal)
symbols. It is conventional for each item in the output stream to be prefixed by a single bit
that identifies which kind of item follows. This variation of LZ77 has been named LZSS
[1]. It is the basis of much compression software in current use, including stacker and
gzip.

If the tagged items in the compressed (output) stream are all encoded using identi-
cal numbers of bits, then greedy parsing is provably optimal. For any optimal parse of the
input that is non-greedy, we can construct an equivalent greedy parse that generates the
same number of output items. However, literal items are normally encoded using fewer
bits than position/length pairs. The number of bits used for a pair may also be variable
because the position and length components may be coded with variable-length schemes.
(Variable-length coding is effective because positions near the end of the buffer are more
likely to be referenced than positions further back, and short lengths occur more fre-
quently than longer lengths.)

The gzip program uses non-greedy parsing. Quoting from the program documenta-
tion [3]:

“zip also defers the selection of matches with a lazy evalua-
tion mechanism. After a match of length N has been found,
zip searches for a longer match at the next input byte. If a
longer match is found, the previous match is truncated to a
length of one (thus producing a single literal byte) and the
longer match is emitted afterwards. Otherwise, the original
match is kept, and the next match search is attempted only N
steps later.”

The gzip approach achieves better compression because a single literal byte has a short
encoding. Indeed, any non-greedy version of the LZSS must necessarily take advantage of
the different coding lengths of items. Our non-greedy version of LZSS may be seen as a
generalization of the gzip approach. It is easy to implement in that only a handful of possi-
bilities need to be carried along at any step. The algorithm has the structure shown in Fig-
ure 2, below. All the details of how to find a longest match between the input and the
buffer and the transferral of input bytes into the buffer have been omitted from the algo-
rithm. The algorithm contains a parameter,MAXDELTA, which limits the number of non-
greedy possibilities that are tested at each step.

The algorithm generalizes the gzip approach by testing to see how many symbols
would be matched if we skipped forward by 2 positions, by 3 positions, and so on. If we

discover that skipping forward by, say, 3 symbols would yield a benefit then the initial
match can be shortened to a match of just three symbols.MAXDELTA limits how far ahead
the algorithm considers skipping ahead with a short match.

If it is sometimes profitable to skip ahead by one byte, generating a single literal
byte, then it is likely that skipping ahead two bytes may also be profitable if those two
bytes can be represented compactly. The encoding scheme used in our experiments uses 9
bits for a literal byte and usually uses 10 bits to encode a pair where the length is 2, 3 or 4.
(It sometimes uses 14 bits, depending on the position in the buffer.) The cost of a single
extra bit definitely seems worthwhile if a match that extends even one byte further into the
input can thereby be used.

The decoding algorithm for this compression approach is the same as for the origi-
nal (greedy) version of LZSS. It is therefore not shown here.

while input remains to be compressed do begin
set len[0],pos[0] = length and position of longest

match between input stream and buffer contents;
if len[0] < 2 then

set delta = 1;
else begin

set delta = 0;
for j := 1 to max(len[0]-1, MAXDELTA) do begin

set len[j],pos[j] = length and position of
longest match between input starting j
bytes ahead and contents of buffer;

if len[j] > len[delta]+j then
set delta = j;

end
end
if delta = 0 then begin

output length/position pair <len[0],pos[0]>;
advance len[0] symbols through input;

end else if delta = 1 then begin
output next input byte as a literal;
advance one symbol through input;

end else begin
output length/position pair <delta,pos[0]>;
advance delta symbols through input;

end
end

Figure 4 The Non-Greedy LZ77 Compression Algorithm

Experimental Results with Non-Greedy LZSS

The compression results for the algorithm shown in Figure 2 are summarized in Table 3.
The notation ‘∆=n’ shows the setting used forMAXDELTA in each test. For comparison
purposes, the compression achieved with the basic LZSS scheme and LZSS with the ‘lazy
evaluation’ heuristic are also included in the table. The experimental algorithm was imple-
mented using the same published table of encodings for literal bytes and pairs [9] as is
used in the Stacker product. The length characteristics of the coding scheme are shown in
Table 4 (which assumes that positions are relative to the end of the buffer).

As may be expected, the compression steadily improves with increasing values for
MAXDELTA. However, at 4, almost all the benefit has been achieved.

4 Summary and Conclusions

The non-greedy variations on LZW and LZSS that are proposed in this paper offer a sim-
ple way to trade CPU time for better compression. In the case of LZSS, the de-compres-
sion program does not require any modifications at all. The de-compression program for
LZW, however, does need to be extended in a minor and inexpensive way. (It only con-
sumes extra CPU time at each use of a non-greedy match.) This is an upward compatible
extension in the sense that the same program could still be used to de-compress the output
of the standard (greedy) LZW algorithm. The two non-greedy methods are well-suited for

Table 3: Benefits from Non-Greedy Parsing with LZSS

Basic
LZSS

LZSS/
gzip

Non-Greedy Algorithm

∆=2 ∆=3 ∆=4 ∆=5 ∆=6 ∆=7

‘csh’ description 35.0% 34.0% 33.9% 33.6% 33.4% 33.3% 33.3% 33.3%

‘make’ description 33.8% 33.0% 32.8% 32.4% 32.3% 32.2% 32.1% 32.1%

ECG data 14.2% 14.1% 13.9% 12.9% 12.5% 12.4% 12.3% 12.3%

Table 4: LZSS (Stacker) Coding Characteristics

Literal Item: 1 bit for tag + 8 bits for symbol

Pair: 1 bit for tag + Position + Length

Position component: 7 bits
11 bits

if 1 <=position < 128
if 128 <=position

Length component: 2 bits
4 bits
8 bits

12 bits
... etc.

if 2 <=length < 4
if 4 <=length < 8
if 8 <=length < 24
if 24 <=length < 40

situations where maximal compression is desirable and where compression speed is less
important.

It is interesting to observe that these algorithmic extensions to LZW and LZSS do
not require us to modify the coding of items in the compressed file. This is a symptom of
the redundancy that remains in a file compressed with LZW or LZSS. In the case of LZW,
many combinations of adjacent dictionary indexes cannot occur in the output (those where
the string represented by the first index and extended by the first symbol of the second
string are already contained in the dictionary). Similarly, in the case of LZSS, many com-
binations of adjacent length/position pairs or literal bytes cannot normally occur in the
compressed file. If some other method could be used to remove the redundancy, the advan-
tage of non-greedy parsing would be largely lost.

The numbers tend to support the view that the greedy methods give results fairly
close to those achievable with the more general non-greedy parsing. However, if modest
improvements in compression are available for modest effort and with little extra com-
plexity in the algorithm, why not go after them?

References

[1] Bell, T. C., Cleary, J. G., and Witten, I. H.Text Compression. Prentice-Hall, Engle-
wood Cliffs, NJ (1990).

[2] Bell, T. C., and Witten, I. H. The Relationship between Greedy Parsing and Symbol-
wise Text Compression. Journal of ACM 41, 4 (July 1994), pp. 708-724.

[3] Gailly, J.-L. Documentation forgzip program, version 1.2.4, (Aug. 1993).

[4] Gonzalez-Smith, M. E., and Storer, J. A. Parallel Algorithms for Data Compression.
Journal of ACM 32, 2 (April 1985), pp. 344-373.

[5] Horspool, R.N Improving LZW. Proceedings of Data Compression Conference,
DCC’91, IEEE Computer Society Press, (April 1991), pp. 332-341.

[6] Schuegraf, E. J., and Heaps, H. S. A Comparison of Algorithms for Database Com-
pression by use of Fragments as Language Elements. Inf. Stor. Ret. 10 (1974), pp.
309-319.

[7] Storer, J.A.Data Compression: Methods and Theory. Computer Science Press,
Rockville, MD (1988).

[8] Welch, T. A. A Technique for High-Performance Data Compression. IEEE Computer
17,6 (June 1984), pp. 8-19.

[9] Whiting, D. L., and George, G. A. Data Compression Apparatus and Method. U.S.
Patent 5,016,009 (May 1991).

[10] Ziv, J, and Lempel, A. A Universal Algorithm for Sequential Data Compression.
IEEE Trans. on Inf. Theory IT-23,3 (May 1977), pp. 337-343.

[11] Ziv, J, and Lempel, A. Compression of Individual Sequences via Variable-Rate Cod-
ing. IEEE Trans. on Inf. Theory IT-24,5 (Sept. 1978), pp. 530-536.

