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SUMMARY

A common problem when writing compilers for programming languages or little, domain-specific languages
is that an input token may have several interpretations, depending on context. Solutions to this problem
demand programmer intervention, obfuscate the language’s grammar, and may introduce subtle bugs. We
present a technique which is simple and without the above drawbacks—allowing a token to simultaneously
have different types—and show how it can be applied to areas such as little language processing and fuzzy
parsing. We also describe ways that compiler tools can support this technique. Copyright 2001 John Wiley
& Sons, Ltd.
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INTRODUCTION

Compilers begin processing an input file by performing lexical analysis and syntactic analysis. Lexical
analyzers, or scanners, effectively break the input into a sequence of words which are examined for
syntactic correctness by a parser. As each word from the scanner is representative of one or more
characters in the input, they are typically referred to as tokens.

Usually, the type of a token—the class of words that the token describes—is clear-cut. Problems
arise, however, when a token’s type depends upon context information that the scanner is not privy to.
An example of this problem comes from PL/I, where statements like the following are legal [1,2]:

IF IF = THEN THEN THEN= IF

Ideally, the scanner should divine which uses of ‘if’ and ‘then’ correspond to keywords, and which
correspond to identifiers; this would allow the parser to use grammar rules which directly reflect
the structure of the language (PL/I, in this case). This ideal token sequence and grammar are shown
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Program
text

IF IF = THEN THEN THEN = IF

Ideal token
sequence

if ID = ID then ID = ID

stmt → ifstmt | asgnstmt
ifstmt → ‘if’ expr ‘then’ stmt

asgnstmt → ‘ID’ ‘ =’ expr
expr → ‘ID’ ‘ =’ ‘ID’

Figure 1. Ideal token sequence and (simplified) grammar.

in Figure1. Unfortunately, the necessary context information to produce this token sequence is not
directly available to the scanner.

In PL/I, this problem arises because keywords like ‘if’ are not reserved, and can be used in other
contexts; most modern languages have avoided this particular difficulty. While compilation of PL/I
is no longer a hot topic, this same problem still arises when compiling little, or domain-specific
languages [3].

More generally, we do not restrict ourselves to keywords, and consideranysituation where a token’s
type is context-dependent. One language may be embedded within another, as SQL can be embedded
within C, C++, or COBOL; the interpretation of tokens may vary greatly between an SQL construct and
the host language! There may also be many dialects of a single language which software re-engineering
tools are obliged to recognize [4].

The following sections discuss a simple technique for handling context-dependent tokens, its
implementation, and some applications. For comparison purposes, alternative techniques are also
presented.

SCHRÖDINGER’S TOKEN

In 1935, Erwin Schr¨odinger published a paper on quantum mechanics in which he posed the
exaggerated case of the now-famous ‘Schr¨odinger’s Cat’ [5]. A cat and a flask of lethal acid share
accommodation in a steel chamber, along with some radioactive material. If an atom in the radioactive
material decays—there is a 50% chance of this happening—the flask is broken, and the global cat
population is decreased by one. However, the decay of the atom, and the fate of the cat, are unknown
until the chamber is opened; effectively, the cat exists in a superposition of ‘alive’ and ‘dead’ states
until that time.

This idea of superposition is a faithful model of the token interpretation problem. In lieu of context
information, a token doesnot have a unique type but instead has a superposition of types: it is all of
its possible types simultaneously, until the parser peeks inside the chamber and resolves the token’s
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Program
text

IF IF = THEN THEN THEN = IF

Token
sequence

if

ID

if

ID
=

then

ID

then

ID

then

ID
=

if

ID

stmt → ifstmt | asgnstmt
ifstmt → ‘if’ expr ‘then’ stmt

asgnstmt → ‘ID’ ‘ =’ expr
expr → ‘ID’ ‘ =’ ‘ID’

Figure 2. Token sequence and grammar, using Schr¨odinger’s tokens. The shaded token types
indicate which interpretation is eventually used by the parser.

type with context information. We use the term ‘Schr¨odinger’s token’ to refer to a token which has a
superposition of types.

Returning to our PL/I example, Figure2 shows the new token sequence from the scanner. ‘If’ and
‘then’ are now Schr¨odinger’s tokens, since they can be either a keyword or an identifier; the ‘=’ token
still has a unique type‡. Notice that the grammar is unchanged from the ‘ideal’ grammar in Figure1—
the use of Schr¨odinger’s tokens is thus programmer-friendly, in that no modifications to the grammar
are required, and therein lies a problem.

Physical superposition embodies§ non-determinism, something which current computers are not
particularly adept at. Parsing algorithms commonly used for compilers, such as the LALR(1) algorithm
in Yacc [6,7] are deterministic and cannot generally cope with the fact that input involving a
Schrödinger token may (temporarily) not have a unique parse. Instead, we use more general parsing
techniques such as generalized LR parsing [8] or Earley’s algorithm [9,10], which effectively simulate
non-determinism if necessary to handle ambiguity in the grammar. In the past, these types of parsers
have not been widely used in compilers due to efficiency concerns: all other things being equal,
the more general parsing algorithms tend to be slower due to extra overhead [11]. However, this is
becoming less of a concern with increases in processor speed and memory capacity. There are now
a number of parser generators and other tools using these general algorithms [12–15], as well as
approaches to making the algorithms faster [16–19].

We note that the Schr¨odinger token technique has been used in the past by computational linguists
[20,21], who are accustomed to using more general parsing techniques. Specifically, the technique was
used in natural language parsing to model the case where a single word can belong to many different
parts of speech. To the best of our knowledge, computational linguists have no name for this technique,
nor has it been applied outside the area of natural language.

‡One could argue that ‘=’ also has a dual interpretation, as a comparison operator or an assignment operator.
§Or, in the cat’s case, possibly disembodies. . .
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ALTERNATIVE TECHNIQUES

There are a number of other techniques¶ for dealing with context-dependent tokens. We present them
here in a parser-independent manner but, in practice, many of them involve more programmer effort
than is initially apparent. This is because techniques requiring grammar modification often trigger
an orgy of grammar rewriting in order to make a modified grammar palatable to a particular parsing
engine.

Lexical feedback

The scanner can be made aware of context if the parser and scanner share some state. The parser
uses this shared state to communicate context information to the scanner; this is referred to as lexical
feedback [6,7].

Lexical feedback has a number of problems in practice. It couples the scanner and parser tightly:
not only do they share state, but the parser and scanner must operate in lock-step. The scanner cannot,
for example, tokenize the entire input in a tight loop, or operate in a separate thread of execution,
because at any moment the parser may direct it to change how it interprets the input. Additionally,
the programmer must fully understand how and when the parser handles tokens, otherwise subtle bugs
may be introduced.

Enumeration of cases

If the scanner insists upon returning the wrong token type in the wrong context, the grammar can be
modified such that the ‘wrong’ token type is accepted as well as the right token type: the programmer
enumerates all the valid cases in the grammar [22,23]. In our PL/I example, we would explicitly note
in the grammar that the scanner may erroneously return an ‘if’ or ‘then’ token in place of an ‘ID’
token. Besides these grammar modifications, the correct addition of a new keyword requires changes
to logically unrelated grammar rules.

Language superset

An alternative approach to handling context-dependent tokens is for the scanner toneverattempt to
distinguish between them, and to always return the most generic token type. The grammar can then be
rewritten to accept a superset of the original language.

Eventually, however, it must be verified that the input conforms to the original grammar. This
can be done in actions associated with the grammar rules, or deferred to later semantic processing.
In either case, the programmer must perform work that the parser was supposed to do in the first place!
Furthermore, the intent of the grammar rules is now hidden, making maintenance difficult.

¶Some of these techniques are folklore. Consequently, not all the citations in this section refer to original sources.
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Oracles

When in doubt about a token’s type, the scanner could invoke an oracle. This oracle would look
forwards or backwards in the input stream, looking for patterns with which to glean context
information. An oracle was used in a PL/I compiler [24], not by the scanner but by the parser, to
compensate for the use of a weak parsing method. In practice, oracles may not always be feasible due
to the performance impact of reprocessing input and the complexity of constructing a correct oracle.

Scannerless parsing

Clearly, if the central problem behind context-dependent tokens is a communication barrier between the
scanner and parser, then merge them together to remove the barrier! This is the promise of scannerless
parsing [25,26]. The programmer supplies a single grammar which describes both lexical and syntactic
rules, making it easy to express the context of tokens.

There are tradeoffs, however. The programmer must supply a grammar which specifies the legal
placement of whitespace and comments. Besides being error-prone, this does not decrease the grammar
size nor increase its readability. The other concern is efficiency, because scannerless parsing uses more
powerful pushdown automata to handle individual characters rather than finite-state automata. This
latter point is hard to judge, as scannerless parsing tools are not available, and no timing results have
been published.

Discussion of alternatives

Use of Schr¨odinger’s tokens is closest in spirit to enumeration of cases. The two methods accomplish
the same goal, albeit with different tradeoffs: enumeration of cases leaves the scanner unchanged and
modifies the grammar, the opposite of Schr¨odinger’s tokens. More broadly, Schr¨odinger’s tokens suffer
from none of the problems of alternative techniques, such as extensive grammar modification and
limiting assumptions placed on the scanner and parser’s operation.

IMPLEMENTATION

Implementation of Schr¨odinger’s tokens can be divided into two logical parts: support required in
parsing tools, and support by the user of those parsing tools, the programmer.

Programmer support

Given a parser generator which supports Schr¨odinger’s tokens, the programmer need only supply a
scanner which produces said tokens. This can be done in a hand-crafted scanner as well as using
scanner generator tools.

Figure3 gives a partial Lex [7,27] specification for our running example. A distinct token type,
‘SCHRODINGER,’ is returned to the parser to signal the appearance of a Schr¨odinger token. The set
of possible types is stored in a global array for use by the parser; for pedagogical reasons, a maximum
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%%

= return ’=’;
if return schrodinger(IF, ID);
then return schrodinger(THEN, ID);
[a-zA-Z]+ return ID;

%%

extern int types[2];

int schrodinger(int type1, int type2) {
types[0] = type1;
types[1] = type2;
return SCHRODINGER;

}
Figure 3. Partial Lex specification using Schr¨odinger’s tokens.

of two superpositioned types is imposed. The usual disambiguation rules for preferring the longest
match are applied.

How is the overlap between token definitions determined? In our experience, this can usually be
done by inspection without much difficulty in the typical case where a single lexeme corresponds to
multiple token types. However, it is possible to construct a scanner generator tool which would look
for such cases automatically.

Parser tool support

Parser generators must have appropriate support for Schr¨odinger’s tokens. We emphasize that this is a
one-time tool modification, invisible to the end user/programmer.

For expository purposes, we begin with Yacc [6,7]. Yacc uses an LALR(1) parsing algorithm, a
flavor of shift/reduce parsing. In shift/reduce parsing, the parser shifts values onto a stack until a valid
right-hand side of some grammar rule is seen atop the stack, at which time the parser reduces, popping
values from the stack. The decision as to what parsing action to take is controlled by a deterministic
automaton, whose transitions Yacc encodes in a table. At its core, Yacc’s parsing algorithm is a loop,
indexing into a table based on the topmost stack value and the current input symbol, and performing
the action specified in the table entry. Figure4(a) shows this algorithm in pseudocode form.

As shown in Figure4(b), supporting Schr¨odinger’s tokens is a matter of performing an action
for each of the superpositioned token types. Unfortunately, this is where LALR(1) parsing and
Schrödinger’s tokens part ways. Even a simple example such as the one in Figure2 would require the
parser to be in two distinct automaton states simultaneously, which is not possible in a deterministic
automaton.

This is where general parsing algorithms come in. Where Yacc’s deterministic LALR(1) algorithm
would fail, an algorithm like generalized LR (GLR) parsing [8] simulates non-determinism, effectively
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a = input()
while (true) {

s = top of stack()
switch (action[s, a]) {

case shift s′:
. . .

case reduce A → α:
. . .

case accept:
. . .

case error:
. . .

}
}

a = input()
while (true) {

s = top of stack()
foreach t ∈ a.types {

switch (action[s, t ]) {
case shift s′:

. . .
case reduce A → α:

. . .
case accept:

. . .
case error:

. . .
}

}
}

(a) (b)

Figure 4. Pseudocode for (a) the LALR(1) parsing algorithm, and (b) conceptual
modifications for Schr¨odinger’s token support.

running multiple parsers in parallel. In essence, a GLR parser employs the algorithm in Figure4(a).
However, instead of the single parsing stack that LALR(1) parsers have, a GLR parser has a set of
parsing stacks: conceptually, one stack for each derivation currently being considered. A GLR parser
must thus use the LALR(1) algorithm for each of its stack tops.

Regardless of the general parsing algorithm used, the required change is the same as outlined above.
Any operation that depends on a token’s type must be repeated for all the superpositioned types in
a Schrödinger token. In the Earley and GLR parsers we have examined, very few lines of code need
modification.

Depending on the parser’s design, no changes at all may be required to support Schr¨odinger’s tokens.
In an object-based parser such as the Earley parser we use in our Scanning, Parsing, and Rewriting Kit
(SPARK) [12], tokens are black boxes. The parser invokes a comparison method within each token to
discern information about its type. In this parsing model, a one-line change to the token’s comparison
method is sufficient for Schr¨odinger’s tokens to work.

APPLICATIONS

Schrödinger’s tokens have many uses. We present three application areas: domain-specific languages,
fuzzy parsing, and whitespace-optional languages.

Domain-specific languages

Domain-specific languages are languages tailored to particular application areas; they need not be fully
general programming languages, so long as they are able to express information about their intended
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Program
text

search nameserver nameserver 142.104.96.1· · ·

Token
sequence

search

value

nameserver

value

nameserver

value
value · · ·

Figure 5. Schr¨odinger’s tokens for parsing key-value pairs.

domain. These languages are often designed and implemented in anad hocfashion, making the use of
traditional compiler techniques difficult, in part due to context-dependent tokens.

Configuration files are one example. Although they vary greatly in complexity, a simple format
involves only key-value pairs, as in the/etc/resolv.conf file from one of our workstations:

search csc.uvic.ca
nameserver 142.104.96.1
nameserver 142.104.6.1

On every line, the first word is the key, and the remaining words on the line are the value. If we were
to process this using compiler tools, it would be reasonable to consider making each key a reserved
word. This way, the grammar would reflect the structure of the language, and appropriate actions could
easily be associated with each different key:

searchstmt→ ‘search’ ‘value’ { action for search}
nameserverstmt→ ‘nameserver’ ‘value’ { action for nameserver}

. . .

However, nothing except good taste prevents us from re-using a key’s name as a value, perhaps
changing the first input line to ‘search nameserver.’ Figure5 shows how the scanner can create
Schrödinger’s tokens to easily handle this case.

Some other domain-specific languages, and examples of how Schr¨odinger’s tokens apply to their
implementation, are as follows.

(i) Command-line arguments. On UNIX‖ systems, commands likefind and expr allow
complicated expressions as command-line arguments. Keywords are not reserved and may
appear as arguments.

(ii) Text-based network protocols. A number of network protocols, such as FTP [28], HTTP [29],
and SMTP [30], use little languages for client–server communication. Again, keywords are not
reserved.

(iii) Programming languages. Some modern domain-specific programming languages have context-
dependent tokens. The first author experienced this when re-implementing Guide [31] using

‖UNIX is a registered trademark of The Open Group in the United States and other countries.
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Program
text

· · · int foo ; class bar { static · · ·

Token
sequence

· · · ID

noise

ID

noise

;

noise

class

noise

ID

noise

{
noise

static

noise
· · ·

Figure 6. Fuzzy parsing of C++ using Schr¨odinger’s tokens.

compiler tools; the initial implementation was anad hoc Perl script. The data description
language ASN.1 [32] also makes provision for non-reserved keywords that are distinguished
by their context.

Fuzzy parsing

‘Fuzzy parsing’ is parsing which only recognizes part of an input [33]. Fuzzy parsers are useful for
software re-engineering and tools which only look for certain features in their input. A fuzzy parser
could extract all the data structure definitions from a program, for instance, or find all public class
members in a Java program.

A fuzzy parser operates by skipping tokens until it sees a specified ‘anchor symbol,’ a sentinel token
that indicates the start of the input sequence that the fuzzy parser recognizes. After parsing this input
sequence, the fuzzy parser reverts to skipping tokens again.

From an engineering perspective, a fuzzy parser is looking for a signal amidst noise. Figure6 shows
how this idea can be applied to create a fuzzy parser that locates class definitions in C++ programs, for
the purposes of discovering the class hierarchy (an example from Reference [33]). The scanner makes
everytoken a Schr¨odinger token with a superposition of two types: the token’s actual type that would
be returned normally, and ‘noise.’ The grammar can then skip uninteresting input tokens by interpreting
them as noise.

The scanner, once configured to return Schr¨odinger’s tokens in this manner, can be re-used without
modification for any fuzzy parsing of C++. Fuzzy parsers constructed with Schr¨odinger’s tokens and a
general parser are more powerful than previous fuzzy parsers, because the ‘signal’ they look for need
not begin with an anchor symbol.

Whitespace-optional languages

Schrödinger’s tokens were envisaged as a means of representing one piece of text that may have
multiple token types. However, there are some languages where even locating token boundaries is
a Herculean task. The classic example is Fortran, where whitespace is optional, and scanning is tricky
[34,35]. For example, the partial input ‘DO57I=’ may correspond to two or four tokens, depending on
the context. (Two abutted identifiers or integers are assumed to be invalid.)

Figure 7 suggests how to address this using Schr¨odinger’s tokens. There are two distinct token
sequences; the shorter of the two sequences is padded out with a special ‘null’ type. These null tokens
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Program
text

DO 57 I = · · ·

Token
sequence

do

ID

INT

null

ID

null
= · · ·

Figure 7. Schr¨odinger’s tokens for parsing Fortran. The token interpretation is not
shown due to lack of sufficient context.

Program
text

list < list < int >> foo · · ·

Token
sequence

ID < ID < ID
>>

>

null

>
ID · · ·

Figure 8. Schr¨odinger’s tokens for parsing C++ template syntax.

must be ignored by the parser, which can be accomplished by grammar modifications that permit an
‘ID’ to be followed by zero or more null tokens.

This idea may be used to handle lexical ambiguity between subranges and real number
representations in some languages, when it is unclear if ‘1..2’ denotes a range of values or two adjacent
real numbers. As shown in Figure8, this idea also makes it straightforward to resolve the ambiguity in
C++ between the right shift operator ‘>>’ and nested template parameters (C++ template parameter
lists are terminated by the ‘>’ symbol) [36].

CONCLUSION

A superposition of token types—a Schr¨odinger token—represents situations where a token’s
interpretation is dependent on context. Using general parsing algorithms, Schr¨odinger’s tokens have
five major advantages compared to other methods for addressing the same problem.

1. No grammar modification is required; the grammar can accurately reflect the language being
parsed, enhancing readability and maintenance.

2. Robustness: use of Schr¨odinger’s tokens does not require the programmer to understand the
parser’s internal mechanisms. As well, no assumptions are made as to when the parser performs
any actions that are associated with grammar rules.

3. Accurate modeling of context-dependent tokens, capturing the scanner’s uncertainty with respect
to token types.

4. No tight coupling between scanner and parser. This again simplifies maintenance, and allows
scanners and parsers to be seen as interchangeable software components.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:803–814
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5. Support for Schr¨odinger’s tokens may require as little as a one-line code change.

The Schr¨odinger token technique is a useful addition to the language implementor’s toolbox.
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