
Compile-Time Analysis of 0 b ject-Oriented
Programs

Jan Vitek, R. Nigel Horspool and James S. Uhi

Depatrment of Computer Science
University of Victoria *

Abstract. Generation of efficient c d e for ob ject-orient4 programs requir~
knowledge of object Iifetimes and method bindings. For object-oriented Ian-
guages that have automatic storqge management and dynamic look-up of
methods, the compiler must obtain such knowledge by performing static anal-
ysis of the source code. We present a.n analysis algorithm which discovers the
potential classes of each object in an object-oriented program as well as a safe
approximation of their lifetimh. These results are obtained using abstract.
domains that approximate memory configurations and interprocedural cdl
patterns of the program We present several alternatives for these abstract
domains that permit a trade-off between accuracy and complexity of the
overall analysis.

1 Introduction

The object-oriented approach to programming has 'become an accepted program-
ming paradigm, joining other paradigms such as imperative, functional and rela-
tional programming. This new paradigm is normally associated with the concepts of
class, method and inheritance. Different object-oriented languages implement these
concepts with varying degrees of dynamic behaviour.

At one extreme, SMALLTALK makes every feature as dynamic as possible. In-
stances of a class are created dynamically which, when no longer referenced, are
garbage collected automatically. Messagm are implemented by dynamic binding of
call site to method implementation. In general this means that a run-time search
through the inheritance hierarchy to find the appropriate method is required for
every message send. Finally, SMALLTALK is dynarnicaily typed, there are no type
declarations and methods are typechecked at run-time.

At the other extreme, GI+ implements as much as possible in a static manner so
that C2+ compilers can generate eficien t code. In particular, memory is allocated
and dsalIocated explicitly by the programmer, methods are statically typed, and
message sends are bound statically under programer control.

In an ideal world, an object-oriented language would be as dynamic as SMALL-
TALK and as efficient as %. The language would provide dynamic features, but
a compiler wouId analyze the code and determine whether or not these features
are used. The user would then only pay a run-time penalty when, and where, the
language is used in a truly dynamic manner.

* P.O. Box 3055, %ctoria, BC, Canada V8W 3P6. {jritek, nigalh, juhl)@csr .uvic .ca

Short of the ideal, we believe there are ways to improve over existing compiler
technology. For instance, static p w p m analgrsis provides a compiler with the infor-
mation needed to distinguish between static and dynamic portions of a program. In
particular, we have been investigating compile-time analysis techniques to determine
the class(es) of each. object in an object-oriented program. This knowledge should
permit the following compiler optimizations.

Static binding of message sends to particular method implementations.
Compiletime type checking of some method parameters.
In-line expansion of method bodies.

The in-lining optimization is particularly relevant to object-oriented languages
where programs tend to be composed of many classes containing very short method
definitions. in practice, in-lining wins big. Experiments have shown that with no
in-lining SELF programs would run between 4 and 160 times slower [2]. With minor
changes, our analysis can be used to infer lifetimes of objects and therefore shift
some of the garbage collection overhead from run-time to compile- time.

For our research we have invented a "ty picaln language with (single) inheritance,
no type declarations of variables, untyped dynamically bound methods and aut+
matic memory management . The use of this language is not a restriction. We expect
our technique to be widely applicable to compilers for existing languages.

The remaining sections of this paper review past work in the area and give a gem
eral overview of our approwh, briefly introduce the small object-oriented language,
and then describe the analysis algorithm and abstract domains.

2 Related Work and Overview .
I

The difficulty in optimizing objectoriented -program lies in the lack of type infor-
mation. Without precise information on the class of the object to which a message
is sent, it is difficult to determine the effect of the message and to bind it statically.
(Note that, static typing, as implemented in EIFFEL, helps little since a type in
EIFFEL consists of a class along with all of its s u b c l ~ s .)

Previous research specific optimizing object-oriented programs has focused on
providing some form of useful type information to the compiler (1 3, 10, 11, 1. Thii
research was pioneered by Susuki [13] who first separated the concepts of type and
inheritance. In his framework any set of classa define a type. Smaller sets are more
informative: a singleton set represents the case when the object has a unique class,
and an empty set indicates an error-there is no pcssible class for the object. Types
are then inferred by a unification algorithm.

Several extensions to this framework were proposed to correct some of the short-
comings of the original algorithm [HI, 11,i'J. Johnson proposed pararneteri~d types
so that many common programs using objects with polymorphic instance variables
could be typed [lo]. Palsberg and Schwartzbach developed a type inference a l p
rithm that takes the context of each message send into account to derive sharper
types ill]. Although the algorithm is limited to the analysis of complete programs,
their results seem to be the m t accurate to dde.

