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Abstract. Method look-up for dynamically typed object-oriented languag-
es, such as SMALLTALK-80 or OBJECTIVE-C, is usually implemented by a cached
inheritance search. Unfortunately, this technique is slow. A selector-indexed
dispatch table implementation speeds up messages to within 10% of the
speed of a statically typed language such as C++. We present a fast technique
for generating compact selector-indexed dispatch tables. 

1 Introduction

Message passing is at the heart of object-oriented programming; the efficiency of this
mechanism is crucial to the overall performance of object-oriented systems. Abundant
attention is given to its optimization, yet it is customary to see modern object-oriented
languages spend more than 20% of their time handling messages [11][18]. The question
we are faced with is the following: Is message passing inherently voracious or can it be
tamed such that its overhead can be reduced to more palatable levels? In this paper, we
show a relatively cheap and simple way to implement fast message passing.

A message send can be implemented as an indirect function call selected on the ba-
sis of the message receiver’s class and the message name (selector). Conceptually this
binding of a message to its implementation proceeds as follows:

• Determine the message receiver’s class;

• if the class implements a message with this selector, execute it;

• otherwise, recursively check parent classes;

• if no implementation is found, signal an error.

Depending on the characteristics of the object-oriented language, this binding can be ef-
fected at run-time, at compile-time, or as a mixture of both. As far as performance is
concerned, it is clearly preferable to perform as much binding as possible at compile-
time (statically) since the cost of a statically bound message is the same as that of a
function call. This is, in general, not possible since it would require knowing, at com-
pile-time, the class of each message receiver. Even in statically typed object-oriented
languages, the exact class of a receiver is not always known statically: a variable refer-
ring to an object has a type which specifies a base class, but the referenced object can
be an instance of any class inheriting from this base class. Dynamic binding cannot be
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eliminated, but it is possible to type-check message sends: a message send is valid if the
receiver has a type which can respond to this particular message. The availability of
type information also permits a fast and compact implementation [13]: every message
selector understood by a class is assigned an offset in an array of pointers to implemen-
tations. Dynamic binding boils down to one array indexing operation. This implemen-
tation technique is compact since the arrays do not contain unnecessary entries and fast.
In C++ a message send (virtual function call) is only 1.7 times slower than a C function
call (section 6).

Dynamically typed object-oriented languages do not require type declarations for
object references. For this reason, any variable can refer to an instance of any class de-
fined in the system, and messages always have to be bound at run-time (dynamically).
The usual implementation of dynamic binding is by cached inheritance search which
follows the procedure outlined above but with the addition of a cache that “remembers”
previous bindings. The time required by this algorithm depends on the time required for
a cache probe and on the cost and frequency of cache misses. To give an example, in
OBJECTIVE-C a cache hit is 3.1 times slower then a C function call and a cache miss is
88 times slower (section 6).

Ignoring almost all the design decisions of cached inheritance search techniques,
dynamic binding can be implemented by full selector-indexed dispatch tables [6]. The
idea is to adapt the table look-up technique used by statically typed languages to dynam-
ically typed languages. Since there is no type information, there can be no compile-time
type-checking. Any message can be sent to any object, even a message for which the
object’s class provides no implementation. The dispatch table of a class needs to have
one entry for each message that its instances can receive, the size of each tables is, there-
fore, equal to the number of selectors defined in the system. As mentioned above, this
technique is very fast and guarantees constant time message sends. Unfortunately, the
space–performance trade-off is unacceptable in practice: the dispatch tables for a class
library of 800 classes and 5,000 message selectors consume 16ΜBytes.

A number of approaches have been tried to reduce the size of these tables
[2][9][10][16][22]. The most effective of these techniques [10] achieves an average dis-
patch table compression of 86%; in the above example 1MByte is still required for the
dispatch tables. These compression algorithms are also computationally intensive; com-
puting the dispatch tables takes more than 36 minutes in this case. 

In this paper we present a fast and intuitive technique for generating compact selec-
tor-indexed dispatch tables. For a class library of 800 classes and 5,000 selectors, our
algorithm generates 152KBytes of dispatch tables, a 99% compression. These data
structures are generated in 41 seconds. There is of course a cost – additional checks
have to be performed for certain message sends and the average message send time is
1.88 times that of a C function call (section 6). This remains faster than a cache hit in a
dynamically typed object-oriented language and stays within 10% of the speed of a C++
virtual function call.

In the future we expect to achieve better compression rates and to reduce computa-
tion times. We are also looking at extending the algorithm to languages with multiple
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inheritance and perhaps to languages with dynamic inheritance [4]. Another avenue of
research would be to adapt our results to the problem of parse table compression.

We illustrate the following discussion of dispatch table compression techniques
with compression rates and timings measured on a NeXTstation relative to the OBJEC-
TIVE–C language and the NEXTSTEP class library (section 6). 

2 Background

In dynamically typed object-oriented programming languages, the two alternatives for
implementing message passing are cached inheritance search and selector-indexed dis-
patch tables. In this paper we argue that dispatch tables can be made practical. We will
now compare the alternatives.

2.1 Cached Inheritance Search

This technique uses a cache of frequently invoked methods to avoid going through the
linear search procedure defined by the naive look-up algorithm. The cache is a table of
triples (selector, class identifier, corresponding implementation pointer). Hashing a
class and a selector returns a slot in the cache. If the class and selector stored in the
cache match, control is transferred to the method. Otherwise, a full linear search
through the inheritance hierarchy is initiated. This search starts at the receiver’s class
and recursively probes parent classes until an implementation of the method is found.
At the end of this search, the cache is augmented with the new triple and then control is
transferred to the method. 

The cache hit rate depends heavily on the characteristics of the program; cache hit
ratios between 85% and 95% have been reported in the literature [8][14][15]. The run-
time memory required by this algorithm is small: usually a fixed amount for the cache
plus the method tables, see Figure 1. The size of the cache varies from one implemen-
tation to the other: [3][5][14] advocate one global fixed size cache of 1K slots; [21] uses
class-specific extensible caches; finally, [8][15] propose multiple small in-line caches,
one per send point. Hash functions and cache insertion routines are discussed in [18]. 

We will use a running example throughout the paper: An accounting package with four
classes: Account, Customer, Window and ScrollWindow. The class hierarchy figure, be-
low, shows inheritance links and method implementations between brackets. 

The run time data structure required by cached inheritance search is shown in Figure 1,
particular implementations may differ in some details. The object myWindow is an in-
stance of ScrollWindow; it has a pointer to its class. A class is represented by an object
with a pointer to a base class and a method table. Entries in the method table hold mes-

Account {close,edit}Window {open,close}

ScrollWindow {scroll,open} Customer  {edit}
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sage selectors and implementation pointers. Note that the method tables hold only
methods defined in the class, not inherited ones. At this point there is only one entry in
the cache for the message open implemented by class ScrollWindow with a selector val-
ue of 1 and implementation pointer &SW_open.

Lisp-based systems also require fast message passing and use method caches to im-
plement message passing. Traditionally, these systems have per-method cache tables of
class identifiers and method addresses. The effective method is retrieved by hashing the
class identifier [12]. Kiczales and Rodriguez [17] have proposed an adaptive method
look-up technique which is particularly suited to interactive development. The cache
contents are specialized according to the actual run-time use of the method. If, for in-
stance, a method is exclusively used to read the value of one of the instance variables
of the receiver object then, instead of storing the address of the method, code to perform
the read can be stored directly in the table. This approach implies that the caches evolve
at run-time. Their technique also supports changes to the class hierarchy as well as to
the individual class definitions. Clearly, this flexibility must come at a run-time cost.
Unfortunately, we did not have an implementation of PCL at our disposal and thus were
not able to perform meaningful comparisons between our technique and theirs.

2.2 Full Selector-Indexed Dispatch Tables

The fastest look-up algorithm is also the easier to understand. The compiler assigns a
unique offset to each message selector and generates, for each class, a table of pointers
to implementations. The implementations that belong in the dispatch table for a partic-
ular class are obtained by flattening the inheritance hierarchy. Therefore, the dispatch
table for a class effectively contains all the methods that an instance of the class can re-
spond to. Table entries corresponding to a message which the class does not understand
contain the address of msgNotUnderstood, we call these empty entries. Usually, most
of the entries in the dispatch tables are empty. Each dispatch table has as many entries
as there are selectors and the number of tables is equal to the number of classes. For ex-
ample, the NEXTSTEP class library has 309 classes and 2709 selectors, its dispatch ta-
bles require 3,348,324 Bytes. Message send is pure table look-up — 1.6 times slower
than a C function call.

1 &W_open

2 &W_close

method
table

1 ScrollWindow &SW_open

– — —

ScrollWindow

myWindow

1 &SW_open

3 &SW_scroll

  cache:

class

method

base class

table

Figure 1   Run time data structures
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The look-up structure for object myWindow is shown in Figure 2. Assume that mes-
sage edit from class Account has been assigned table offset 3. Then the dispatch table
for ScrollWindow contains the address of msgNotUnderstood at offset 3 because class
ScrollWindow does not implement this message.

Note that, unlike the method table used for cached inheritance search, here the dis-
patch table holds only implementation pointers. Figure 4 shows sample dispatch tables
for the three classes of the example; table entries containing 0 are empty entries (mes-
sage not understood).

2.3 Dispatch Table Compression Techniques

Previous work falls in two categories: graph coloring schemes and row displacement
schemes1. Graph coloring schemes attempt to minimize the length of each table by a
judicious choice of indices. This is achieved by partitioning all message selectors into
groups such that each group only contains selectors defined by different classes. The
size of individual tables is equal to the number of groups. This problem is equivalent to

1. These names were originally coined in the context of parser table optimization [7],
but the problems are related and the solutions similar enough; other parser table com-
pression schemes do not appear to be applicable in our context.

0 &SW_open

1 &W_close

2 &SW_scroll

3 &msgNotUnderstood

ScrollWindow

myWindow
class

dispatch
table

Figure 2   Run time data structures

where, 
&Window_open=1, 
&Window_close=2, 
&ScrollWindow_open=3, 
&ScrollWindow_scroll=4, 
&Account_close=5, 
&Account_edit=6, 
&Customer_edit=7,
&msgNotUnderstood=0.
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the problem of finding the minimal coloring of a graph. Variations of this scheme have
been discussed in [2][9][16][22]. In general, the computation time for these methods is
prohibitive (section 6). The row displacement scheme (or Selector Array) is a faster
compression method, but achieving similar compression rates (section 6). This method
was presented by Driesen in [10]. The principle is to merge all tables into one master
array. Compression is achieved by finding a mapping of the tables onto the master array
which takes advantage of the sparse nature of the tables. A thorough examination of
these schemes can be found in [11], which we will not duplicate here. Both schemes
guarantee constant time method look-up with a message sending speed only a little
slower then that of full selector-indexed dispatch tables.

3 Compact Selector-Indexed Dispatch Tables

How do we compress the dispatch tables while, at the same time, retaining most of the
speed-up obtained by the dispatch table technique? The full dispatch table allocation al-
gorithm performs a single top-down traversal of the class hierarchy assigning table off-
sets to messages and constructing dispatch tables. For a set of selectors and a class hi-
erarchy, full dispatch table allocation can be performed by the following algorithm

offset = 0
maxOffset = | Selectors |
FORALL s ∈ Selectors  DO s.offset = −1
FORALL c ∈ Rootclasses  DO allocate(c)

PROCEDURE allocate(class)
dt : ARRAY[0 .. |maxOffset| ]
FORALL i ∈ [0 .. |maxOffset| ] DO dt[i] = &msgNotUnderstood
FORALL s ∈ selectors (class) DO

IF s.offset = −1 THEN

s.offset = offset

offset = offset + 1
dt[s.offset] = implementation(class, s)

class.dispatchtable = dt

FORALL c ∈ derivedclasses(class) DO allocate(c)

The output of this simple-minded algorithm is interesting: the algorithm generates dis-
patch tables which are all quite similar. In fact, we can observe that the algorithm en-
forces four constraints on dispatch tables:

By separately relaxing each of these constraints, it is possible to obtain an algorithm
which computes compact selector-indexed dispatch tables. Lifting the first constraint

1. Constant table size.
2. One selector per table offset.
3. One class per table.
4. One implementation per entry.
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allows us to trim the dispatch tables of trailing empty entries. Dropping the second con-
straint permits aliasing so that multiple selectors can share the same table offset, thus
reducing overall table size. Removing the third constraint allows the sharing of identi-
cal dispatch tables. Finally, doing away with the last constraint implies that table entries
can be overloaded and contain multiple implementations, thus opening further oppor-
tunities for table sharing. Each of these options will be discussed in the following sub-
sections. The selector aliasing (subsection 3.2) and table entry overloading (subsection
3.4) optimizations are the main contributions of this paper, thus they will be examined
in greater detail.

3.1 Dispatch Table Trimming

Dispatch table trimming1 removes trailing empty entries from dispatch tables, as shown
in Figure 4. 

Applied to a set of 309 classes taken from the NEXTSTEP class library, trimming re-
duces the size of dispatch tables from 837,081 table entries to 768,467 entries, a 9%
compression. After trimming, the dispatch tables can differ in size; therefore the com-
piler should generate code to prevent indexing errors. The checking code is needed only
for message sends with an offset larger than the smallest dispatch table in the system.
The average speed of a message send is 1.7 times that of a function call.

3.2 Selector Aliasing

After trimming, dispatch tables still mostly consist of empty entries. Selector aliasing
packs tables by assigning the same offset to different selectors. Figure 5 shows an ex-
ample of aliasing on a single dispatch table, messages b and c are not understood so it
is possible to alias them with d and e, respectively. Since, in general, the program can-

1. A similar technique is used in [10], where both trailing and leading entries are re-
moved from the dispatch table. In our case it is not necessary to remove leading empty
entries at this stage, selector aliasing (subsection 3.2) will take care of them.
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not be guaranteed to be type-safe, aliasing requires additional run-time checks. These
checks are detailed below.

Adding aliasing to the one pass table allocation algorithm is simple, but we have to
ensure that the selectors understood by a class do not end up being aliased and that se-
lectors are assigned a unique offset. Figure 6 shows an example of incorrect aliasing: d
ends up with two different offsets. In practice, problems only occur when two classes,
unrelated by inheritance, implement messages with the same selector. We call such se-
lectors conflict selectors and take special precautions so that they are not involved in
aliasing. Assume for instance that classes A and B both implement a message with se-
lector d and neither class is a parent of the other. Then d is a conflict selector. In our
running example close is a conflict selector since it is understood by unrelated classes
Window and Account.

There are two ways to remove the obstacle presented by conflict selectors: the first
allows selector aliasing as long as the offset of a conflict selector is not changed, this
limits the size gains of aliasing1; the second removes conflict selectors altogether. We
have chosen the latter.

1. Take for example, a dispatch table with one conflict entry at offset 100 and with all
remaining entries empty. If we were not allowed to change the offset of that selector,
this table would remain 99% empty.
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3.2.1 Factoring Out Conflict Selectors
A second set of dispatch tables, called conflict tables, is created and conflict selectors
are assigned offsets in these tables, as in Figure 7. This does not change the overall
space requirement, nor does it affect message send speed. The only difference is that the
compiler will generate code to access either the dispatch table or the conflict table de-
pending on the message selector. 

Aliasing is only applied to dispatch tables, conflict tables remain unchanged. Figure
4 shows aliasing in the running example. After aliasing, dispatch tables have no empty
entries, while conflict tables remain more than 90% empty. In the NEXTSTEP class li-
brary, aliasing reduces the number of entries in the dispatch tables to  111,922, a com-
pression of 87%. 

An additional run-time check is added for shared table offsets: we say that a colli-
sion occurs if, for instance, both edit and open share offset 0. Message send x→edit() is
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translated to an access of x’s dispatch table at offset 0. Now, if the class of x is in fact
Window then offset 0 points to open and not edit. We have to check that the selector re-
quested matches the selector of the method found in the table. This can be implemented
by loading the selector at the send point and checking it in a prologue to the method.
Note that collision checking code is only emitted for shared offsets; about 80% of the
offsets are aliased in a complete system. The average message send speed for the NEXT-
STEP library is increased to 1.8 times that of a C function call1.

3.3 Dispatch Table Sharing

Identical dispatch or conflict tables can be shared, thus further reducing total space con-
sumption, as seen in Figure 4. This straightforward optimization entails no additional
run-time cost. Usually, many conflict tables are identical and can be merged, but merg-
ing dispatch tables is rare. The potential for sharing is fully realized only when it is ap-
plied in conjunction with table entry overloading.

3.4 Table Entry Overloading

Table sharing merges identical tables. But the majority of dispatch tables in an object
system differ, often only in a small way, from their parents’ tables. The idea is to merge
sufficiently “similar” tables by overloading entries with multiple implementations, as
in Figure 10. A simple and efficient way to perform this merge is to walk the inheritance
tree and try to merge children with their parents. This technique reduces the number of
tables needed for the NEXTSTEP class library from 309 dispatch tables and 309 conflict
tables to 24 and 33 tables respectively. The number of entries is reduced to 11,173, or a
98.6% compression of the original space requirement. The average message send speed
is 1.88 times that of a C function call.

The degree of similarity at which the tables can be merged is a parameter of the al-
gorithm. This degree, with respect to two tables to merge, is defined as the number of
entries to overload divided by the size of the table. Figure 4 demonstrates overloading

1. Since the code generated for a message send depends on whether the message selec-
tor is aliased, the exact message send speed depends on the characteristics of the pro-
gram.
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at 50% similarity. At 0% all tables are merged into one; at 100% only identical tables
can be merged. 

To summarize our work with the NEXSTEP library, Table 1 gives the characteristics
of the algorithm’s output for three overloading levels: maximal overloading, minimal
overloading and the level we used, which is 10%. We chose this particular level for its
space/efficiency trade-off, but other solutions at different compression levels can be
chosen.

3.5 Run Time Aspects

The space gain due to overloading table entries has to be balanced against the additional
run-time cost incurred due to this optimization. Overloaded entries contain a pointer to
a small dispatch routine which executes one of the implementations depending on the
object’s class. There is one dispatch routine for every overloaded table entry in the sys-

overloading dispatch
tables entries empty conflict

tables entries empty avg. send 
speed

Max (0%) 1 342 0 1 730 186 1.38e-6 sec.

Min (100%) 309 66,976 0 260 44,946 40,279 1.08e-6 sec.

Sel (10%) 24 5,853 104 33 8305 5113 1.15e-6 sec.

Table 1  Compact dispatch tables
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tem. These routines merely compare the class identifier against each possibility and
transfer control when a match is found.

In our implementation, the code of the dispatcher routines has been speeded up by two
additional optimizations: organizing the tests as a binary search tree structure and using
a fast subclass-of check. The overloading factor of a table entry is the number of imple-
mentations that share that entry. For an overloading factor larger than 3 it becomes prof-
itable to modify the structure of dispatchers from the sequence shown above to a binary
search tree structure, thus reducing the average number of compares needed to find an
implementation. The overall number of compares can be reduced by observing that
overloaded entries often contain the same implementation more than once and that the
classes corresponding to these implementations are related by inheritance. Therefore,
instead of checking for equality of class identifiers, checking for class inclusion reduces
the number of compares. We have implemented a fast subclass-of check for languages
with single inheritance by encoding the position of a class in the inheritance tree in a
short bit string and using simple logical operations to check for subclassing.

Note that checking for collisions (aliasing) is not necessary for overloaded entries, the
class check suffices. An overloaded offset is an offset in a dispatch or conflict table for
which at least one table has an overloaded entry. For offsets which are both aliased and
overloaded, the compiler generates code to load the class identifier and the dispatcher
code, but not the alias checking code. For overloaded offsets, the compiler generates the
load for all message sends requesting that offset, but dispatcher code only for the table
entries which are actually overloaded. Non-overloaded entries simply transfer control
directly to the method implementation. Table 2 summarizes the conditions under which
checking code is emitted.

Offset > min. table size x x x x x x x

Offset aliased x x x x x x x x

Offset overloaded x x x x x x x x

Entry overloading factor > 1 x x x x

size check ²• • • • • • •

collision check • • • •

load class identifier • • • • • • • •

dispatcher • • • • •

Table 2  Required checks per dispatch table entry
Each column describes the checking code that has to be emitted by the compiler
for a particular message send. The first four rows describe conditions under
which code is emitted and the next four rows specify which checking code to
generate. The size checks, collisions checks and class identifier loads are emitted
for every message send accessing the same offset. The dispatcher routine is
emitted only once per table entry.
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4 Separate Compilation

Separate compilation is a key feature of modern programming languages. Dispatch ta-
ble allocation is by nature a system-wide procedure which requires the interfaces of all
classes in the system. Changes in the interfaces may modify the offsets assigned to mes-
sages, which, in turn, implies changing the code generated at each send point, triggering
extensive and unnecessary recompilation of large portions of the system. For this rea-
son, previous work in the field [2][9][11][22] makes the assumption that dispatch tables
would be generated once the program has reached a stable state and not during devel-
opment where traditional look-up techniques could be used. The other reason for this
choice is that all of the methods listed above are expensive, and nowadays few devel-
opers are ready to accept compilation times of more then a few minutes. This approach
has nevertheless a disadvantage: performance of the system during development is con-
siderably different from that of the final product.

Our algorithm is fast. Already at its present speed, the algorithm is well suited for
use during program development. Furthermore its implementation still leaves room for
optimization. One problem remains: recompilation of message sends at each interface
change is out of the question. During development we propose to add a level of indirec-
tion which will eliminate unnecessary recompilation. For each message selector, the
compiler generates a dispatcher, a piece of code which performs size, alias and over-
loading checks. It is the dispatcher which may be recompiled if the status of the selector
changes, and not the application code; furthermore recompilation of the dispatchers
only takes places once, at link-time. This indirection has a small performance cost,
equal to one jump instruction, and brings the average message send time in the NEXT-
STEP library close to 2.1 times the speed of a C function call. 

5 Further Optimization of Message Sends

A number of improvements can be made to the algorithm to further diminish the size
and number of dispatch tables. These optimizations all require some amount of static
analysis, see [1][4][15][27] for the state-of-the-art in static analysis techniques for ob-
ject-oriented programs. 

First and foremost, if the type of a variable can be pinned down to a small set of
classes which provide only one implementation of the requested message selector then
the message send can be bound statically. 

If the analysis can discover that there exists no valid execution path in the program
which creates any instance of a class, then no dispatch tables have to be generated for
this class. 

Any method which is never redefined need not be put in the dispatch tables. The
compiler will generate some subclass checking code in the prologue to type-check the
receiver and the method can be bound statically. 
– 13 –



6 Space, Time and Efficiency Measurements

Space. We computed the amount of space consumed by the three method look-up tech-
niques: cached inheritance search, full dispatch tables and compact dispatch tables, for
the NEXSTEP class library and the SMALLTALK-80 system. For comparison, we added
results obtained by the sparse array method of [10] and the selector coloring method of
[2] on the SMALLTALK–80 class library. The results are shown in Table 3. 

Our numbers for the NEXSTEP class library include classes defined in all kits as well as
all categories [21]. The total compiled code size of the NEXSTEP library is 3.1 Mbytes.
The compact dispatch tables represent 0.4% of the space in that system. The numbers
for SMALLTALK–80 come from [11]. For cached inheritance search we assumed that the
cache was a fixed size table of 1024 entries of 8 bytes each [5]. In theory, cache sizes
can range from 0 to nc × nms × sizeof(pointer). Table 4 list the relevant characteristics
of the libraries. 

The space consumption function is defined thus: 

library
Cached inher. 

search
(cis)

Full dispatch 
tables
(fdt)

Sparse 
arrays 
[10]

Selector 
coloring 

[2]

Compact 
dispatch tables

(cdt)

NEXTSTEP 34,142 3,348,324 — — 53,674

SMALLTALK–80 89,000 15,380,000 1,040,000 1,200,236 107,228

Table 3  Space usage (bytes)

library nc nms nmd ncm nte nce

NEXTSTEP 309 2709 4325 380 8305 5113

SMALLTALK–80 774 5105 8560 642 13335 13472

Table 4  Example characteristic

nc = number of classes. ncm = number of conflicting method selectors.

nms =  number of selectors. nte = number of dispatch table entries.

nmd = number of method definitions. nce = number of conflict table entries.

space(cis) = hash table + nmd × (sizeof(selector) + sizeof(pointer))

space(fdt) = nc × nms × sizeof(pointer)

space(cdt) = (nte + nce) × sizeof(pointer) 
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Time. We implemented our algorithm in approximately 1,500 lines of OBJECTIVE–C.
The algorithm completes dispatch table allocation for the entire SMALLTALK-80 system
in 41 seconds (user + system time). As a comparison, the selector coloring method of
[2] takes 9 hours to generate dispatch tables for the same system and 37 minutes with
the sparse array method of [10]. Table 5 gives the running times of the algorithms for
the NEXTSTEP classes, a subset of the SMALLTALK-80 system and the entire system. 

Efficiency. We implemented a family of inline method look-up routines which include
the checks discussed in section 3. We compared our message send time against the times
of C++, OBJECTIVE–C and C. Method look-up with compact dispatch tables beats OB-
JECTIVE–C cache hits and is only 10% slower then C++. Note that, following most com-
mercial C++ compilers, we chose to locate our method look-up code inline, that is at the
method send point instead of in a separate routine. This choice avoids one transfer of
control at the price of slightly larger executables. A detail discussion of the trade-off and
design choices involved in the different look-up mechanisms can be found in [23]. Table
6 shows the message send times along with the exact ratios1.  

Compute times
Sparse 
arrays 
[10]

Selector 
coloring 

[2]

Compact 
dispatch tables

(cdt)

NEXTSTEP – – 17 sec.

SMALLTALK–80 (without 
meta)

13 min. 1 h. 32 min. 20 sec.

SMALLTALK–80 (complete) 37 min. 9 h. 45 sec.

Table 5  Compute times of the various algorithms

language (algorithm) call time 
(µs) ratio

C function .61 1.00

C++  1.06 1.73

OBJECTIVE–C cache hit  1.93 3.16

OBJECTIVE–C cache miss 53.90 88.24

Compact dispatch tables 1.15 1.88

Table 6  Message send times

1. Koenig gives a ratio of 1.3 for C++ [19], Meyer a ratio of 1.25 for EIFFEL [20], Thomas
reports a ratio of 1.5 for OBJECTIVE-C and claims that SMALLTALK messages are faster than
function calls [24]. We have no explanation for the discrepancies between those num-
bers and our data.
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The benchmark was run on a NeXT station with a Motorola 68040 processor. Send
times were measured for empty methods with no arguments (equivalent to C functions
with a single argument). The send time is the sum of the look-up time and the time need-
ed to transfer control and return. The final timings were obtained from ten executions
of a program containing a loop that sent 1,000,000 messages. Both the user and system
time returned by the UNIX time command were summed and the averages of the nor-
malized sums (with respect to a program containing an empty loop) were taken. The C
function used for comparison had a single pointer argument. To obtain a cache miss
time for OBJECTIVE–C we used a program which sent 5,000 different messages (100
different message selectors, 50 classes). The poor performance of OBJECTIVE–C comes
mostly from the heavy price extracted by cache missesthey are 88 times slower than
a C function call. Note that although a cache miss is 25 times slower than a hit with the
current OBJECTIVE–C compiler, this is actually an improvement over SMALLTALK-80
implementations where this ratio is 64 [25]. 

7 Conclusion: A Messenger for All Weathers 

In this paper we have shown how message look-up for dynamically typed object orient-
ed programming languages can be almost as fast as that of statically typed languages
and that the space–time requirements of the look-up algorithm need not be excessive.
We have not discussed, so far, how all of the techniques found in the literature fit to-
gether and can, perhaps, be combined for even faster look-up.

There are two approaches to speeding up dynamic binding: either speed up the look-
up routine (all of the algorithms discussed in this paper attempt to do this) or remove
the look-up altogether (with static binding). 

We have discussed ways to speed up dynamic binding: cached inheritance search or
selector-indexed table look-up. There are many flavors of the former [8][15][18][21]
[25]. The classical fixed sized cache, as defined in [14], is simple to implement and al-
lows separate compilation, but this technique is by far the slowest. NeXT has improved
on this implementation by replacing the central fixed size cache with many extensible
class-specific caches. This technique is still slow. An interesting variation, proposed by
Deutsch and Schiffman [8], is to cache the frequently used methods, in-line, at each
send point. Even more interesting is the idea of the polymorphic in-line caches (PICs)
developed by Hoelze, Chambers and Ungar [15]. They advocate inline caches that can
be extended dynamically to hold multiple entries, but the novelty of PICs is that they are
repositories of run time type information and, therefore, can be invaluable for recompi-
lation of the program. Both in-line techniques assume a complete program is at hand
and use some form of dynamic compilation. They seem less suited for “traditional” stat-
ically compiled languages. A number of algorithms for selector-indexed table look-up
have been published recently [2][9][10][16][22] with faster dispatch speed but lower
compression rates and much slower running times than our technique.

Static binding techniques fall in two main categories: manual static binding and
compiler-directed static binding. The first category is restricted to statically typed lan-
guage with specific keywords for inlining, e.g. C++ [13], and would make little sense in
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a dynamically typed language. The C++ technique puts the onus on the programmer: it
is more cumbersome and a bad inlining decision in a base class can prevent later redef-
initions of methods in derived classes. On the other hand, if the programmer really
knows what he or she is doing, message sending becomes particularly efficient. Com-
piler directed techniques include all techniques by which the compiler is able to deter-
mine the class of an object and statically bind the call. Such techniques include type in-
ference (e.g. [1]), data flow analysis (e.g. [27]), and many of the techniques invented
for the SELF language [4]. Automatic techniques do not burden the programmer in the
same way as manual ones, but they are less precise: they cannot always discover the ex-
act classes of objects. Also, these techniques are usually time consuming (causing long-
er compile times) and require access to the entire program text.

So, where do we fit in? We have observed that statically typed object oriented lan-
guages already have constant time algorithms faster than ours. The algorithms present-
ed in this paper are, therefore, better suited to dynamically typed languages. For fast
compilation, the best choice is a cached inheritance search algorithm. But our algorithm
can be used for faster program execution at the cost of slightly longer compile times.
The fastest message sending mechanism for a dynamically typed object oriented lan-
guage would be one which combines automatic type discovery (to minimize dynamic
calls and to shrink the dispatch tables) with compact selector-indexed dispatch tables to
ensure that the remaining message sends execute as fast as possible.
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