
Two Techniques for Improving the Performance

of Exception Handling

Michael J. Zastre and R. Nigel Horspool
{zastre,nigelh}@cs.uvic.ca

Department of Computer Science, University of Victoria, P.O. Box 3055 STN CSC,
Victoria, B.C., V8W 3P6, Canada

Abstract. Two new optimizations using whole-program analysis are
presented for languages using try-catch exceptions clauses (such as Java
and C#) – farhandlers reduce the time needed to locate the handler for
a thrown exception, and throwsite reduction eliminates unnecessary run-
time overhead at throw instructions. Also presented are experimental
results from a Java VM modified to implement these optimizations.

1 Introduction

Exceptions and their handling occupy an odd place amongst the set of program-
ming-language constructs in languages such as Java. Exceptions are absolutely
necessary in that Java’s API simply requires their use in many cases, the most
notable being for I/O. At the same time, however, exceptions are deemed to be
rather expensive, and so in dispensing practical advice regarding performance
Java programmers are encouraged to avoid them if at all possible in their own
code [Shir00]. The advice seems reasonable especially given the run-time ex-
pense of exceptions – for instance, with many implementations of the Java VM
the time taken to throw and catch a NullPointerExceptionwhen dereferencing
a null pointer is thousands of times more expensive than explicitly comparing an
object reference with the value null [Zast05]. Nor can programming-language
implementors be blamed for this run-time expense as they have been led to be-
lieve that exceptions are rare, and given the complexity of compilers, interpreters
and VMs, they (rightly) choose to concentrate on what they consider to be more
profitable optimizations. Indeed they often follow the advice given by designers
of the programming language, a rare exemplar of which is shown here in text
taken from the Modula-3 report [Card89, p. 17]:

Implementations [of Modula-3] should speed up normal outcomes at
the expense of exceptions (except for the return-exception and exit-
exception). Expending ten thousand instructions per exception raised
to save one instruction per procedural call would be defensible.

The result for most languages appears to be something of a classic “catch-22”:
Before exception implementations become faster there needs to be more pro-
grammers using exceptions, yet programmers tend to avoid exceptions because

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

63



of their negative impact on program performance. Therefore there exists a dan-
ger that the innovative uses of exceptions in the structuring of programs may
not get much purchase amongst practitioners if the run-time costs are deemed
to negate the gains to program clarity and expressibility.

Our contribution to breaking out of the “catch-22” is to propose two opti-
mizations that reduce the run-time cost of exceptions. These optimizations do
not require programmers to write their code any differently than they would
when using exceptions, nor are programmers expected to supply special annota-
tions or pragmas. The optimizations are also applicable when throw and handler
sites are located within different methods. We introduce the first of these, called
farhandlers in the next section. After that we introduce the second technique,
called throwsite reduction. Next appears some experimental results obtained from
a modified Java VM, and this is followed by a brief description of related work.

2 Farhandlers

Consider the callgraph in Figure 1. If the site calling a method is enclosed within
an exception handler, then the edge corresponding to that method call is labelled.
For example, there is a call to method b within method a, and this call occurs
within a handler for exceptions of class E. In this particular callgraph there
appear four different handlers for exceptions E; handlers are numbered within
parentheses. (Note: This numbering is not programmatic – that is, a programmer
does not provide this numbering.) The question posed by the diagram is: If an
exception of class E is thrown in method m, which of the four handlers will catch
it?

a

b c

d

e f g

h

i j k

m

E (1)

E (2)

E (3)

E (4)

Fig. 1. Callgraph example

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

64



The answer depends, of course, on the path through the graph from node a to
node m, and here we assume that there is no handler for E local to m. In practice
most exception-handling mechanisms unwind the stack : a local handler for E in
m is sought at run-time, and if one is not found, the search continues within the
method that called m, with the search proceeding through the callstack until a
local handler is found.

The goal of a farhandler table is to reduce both the number of handler-table
lookups and the number of times stack-unwinding occurs by taking into account
information about the callpath available on the runtime stack. For example, if
an exception of class E is thrown on an invocation of m, then we can examine the
return address stored for that invocation. If this return address indicates a call
from either i or j, then unwinding to the first invocation of h is needed to help
determine the location of a handler. However, if the return address indicates a
call from k, then the handler location is known (that is, we unwind to the most
recent invocation of h and transfer control to the first instruction in the handler
E(4)). Therefore even if an exception-handler table exists in nodes i or j (that
is, for other exception classes), we do not examine the tables; as we need not
check for such tables, we can unwind the stack faster than if we had to examine
the tables.

Extending the example somewhat, consider the callpath a, b, d, f, h,

j, m. The callgraph indicates that if such a path has been followed at runtime,
handler E(1) would be the appropriate handler when an instance of E is thrown
in m. At runtime, however, we would normally be able to piece together the
callpath only by examining the call stack one frame at a time. (The implica-
tion here is that we choose not to keep a copy of the callpath separate from
the call stack itself as that would introduce possibly unnecessary work at each
method invocation.) That being the case, what is the smallest number of distinct
unwind/lookup steps needed to locate the handler? Here the answer is “3”:

1. At the invocation of m, the return address stored indicates that m was called
from j; therefore we unwind to h.

2. Now that we are in h’s context, the return address stored here indicates that
this invocation of h is the result of a call from f; therefore we can unwind
to d.

3. In d’s context, we discover from the return address stored here that d was
called from b, and that b itself was called from a and this from within a
handler to E (handler 1 from the callgraph). Therefore we can unwind to a

and then transfer control to the first instruction in E(1).

To implement this new form of handler lookup we introduce a farhandler

table; the name is meant to suggest an aid for finding non-local handlers. Such
a table for the example callgraph appears in Table 1. Here are a few items to
observe about this table:

– Each row in this table has an edge in the callgraph (i.e., one-to-one mapping
from edges to row).

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

65



– At exception-throw time, the current stackframe context (i.e., the node) and
the return address stored in the context are used to find a single row in the
table.

– Each row in the table has either an entry in the Dispatch Address column
or in the Handler Info column, but not both.

Entries in Dispatch Address indicate both an unwind point and an address to
which control flow is transferred. For example, PC(E1) denotes the first location
in handler E(1). No further lookups or unwinding are necessary after using in-
formation in Dispatch Address. If the location of a handler is not yet known,
then Handler Info is used to indicate the point to which the stack must be un-
wound. For example, the first step given the program path above would result in
a lookup of the second-to-last row, and this contains H(h) – therefore the run-
time stack is unwound to the earliest instance of h and handler lookup continues
in h’s context.

Node Return Address Dispatch Address Handler Info

a — — H(a)
b PC(a.b())+4 a:PC(E1) —
c PC(a.c())+4 — H(c)
d PC(b.d())+4 a:PC(E1) —
d PC(c.d())+4 c:PC(E2) —
e PC(d.e())+4 — H(d)
f PC(d.f())+4 — H(d)
g PC(d.g())+4 — H(d)
h PC(e.h())+4 e:PC(E3) —
h PC(f.h())+4 — H(d)
h PC(g.h())+4 — H(d)
h PC(k.h())+4 h:PC(E4) —
i PC(i.i())+4 — H(h)
i PC(i.h())+4 — H(h)
j PC(h.j())+4 — H(h)
k PC(h.k())+4 h:PC(E4) —
m PC(i.m())+4 — H(h)
m PC(j.m())+4 — H(h)
m PC(k.m())+4 — H(k)

Table 1. Program-wide handler table for callgraph example

Computing these tables is relatively straightforward and consists of three
separate steps:

1. For each node, a set of reachable handlers for a given exception class is
computed; set items are denoted by a triple of the form 〈ns, Σ, nd〉, where
ns is a calling (or source) node, nd the called (or destination) node, and Σ the
exception handler enclosing the call of m to n. (i.e., these are representations
of labelled edges in our callgraph). The sets of reachable handlers from a node
such as m, i.e., those later in the call sequence, are larger than a node such
as d, i.e., those earlier in the call sequence.

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

66



2. We then identify those nodes where control-flow paths merge together. These
nodes are called mergehandlers. In our callgraph example, such nodes are d,
h and m; the root node of a callgraph is considered to be a trivial merge
node (i.e., a in our example). All other nodes can be reached from only
one other node. Each node in the callgraph will have associated with it a
mergehandler, which is either the node itself (if the node is a mergehandler)
or the first mergehandler encountered when traversing up the callgraph (i.e.,
towards the root node).

3. With the previous two items we can now construct the farhandler table row
by row. Each callgraph edge corresponds to a table row. The first field in
the row is the edge’s destination node. The second field is the return address
corresponding to the callsite (i.e., next instruction following the callsite in
the edge’s source node). If there is exactly one item in set computed for the
destination node in (1) above, then the corresponding handler is used to fill
in the third field. Otherwise the third field remains blank and the fourth
field is filled with the mergehandler for that node.

Farhandler tables can be extended to deal with more than one exception type by
adding extra columns to the table and repeating the analysis for each additional
exception type.

There has been no mention of finally clauses so far. Previous work has
shown that these clauses are rare in practice [Ryde00]. We nevertheless have
described one way of dealing with such clauses in [Zast05].

3 Throwsite Reduction

The actual run-time cost of throwing and catching an exception can be broken
down into approximately four separate categories:

– the effort required to allocate an exception object on the heap;
– the construction of a stack trace;
– the cost of unwinding the stack; and
– other activities such as handler table lookup, actions of the VM, garbage

collection during unwinding, etc.

These activities can often take surprisingly long periods of time, and one or two
of these consume large proportions of the overall effort needed for throwing and
catching [Zast05]. For example, stack-trace construction on the Java Classic VM
(version 1.4.2) makes up at least 50% of the effort, and the deeper the callstack
the longer the time required (i.e., the complete stacktrace comprises information
starting at program’s main entry point and leading down to the throwing method
itself).

What is somewhat more shocking is that there is no requirement stating
a handler must use the exception object, nor need the handler even reference
the stacktrace itself. Many handlers in fact do not use the exception object
to transfer information from the throwsite to the handler, and instead depend

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

67



upon exceptions as a form of control-flow transfer. Therefore we propose an
optimization called throwsite reduction, implying that the work performed at
the throwsite (such as exception-object creation and stacktrace construction) is
eliminated if certain facts are true about handlers reachable from the throwsite.

P() {
01 try { Q();
02 try { R(); }
03 catch (F f) { use; T(); }
04 T();

}
05 catch(E e) { discard }
06 catch(F f) { discard }

}

Q() {
07 try { S(); }
08 catch (F f) { discard }

}

R() {
09 S();

}

S() {
10 switch (condition) {
11 case 1: try { S(); }
12 catch(F f) { use }

break;
13 case 2: try { S(); }
14 catch(F f) { discard }

break;
15 case 3: T();

break;
16 default: throw new E();

}
}

T() {
17 throw new F();

}

P

Q TR

S

01 02

03

04

07 09 15

11 13

(a) code (b) call graph

Fig. 2. Code and callgraph

Consider the code appearing in Figure 2 and the corresponding callgraph
appearing to the right of the code. The labels on callgraph edges now correspond
to line numbers in the code example (i.e., the edge from R to S corresponds to
line 09 where R() makes a call to S()). Nearly every call is enclosed by some
try block. The start of handler blocks are notated with either the word use

or discard; this indicates whether or not the exception object is used by the
handler. The questions raised by this code are: Does an exception object need
to be created at the throwsite on line 16? or on line 17?

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

68



If all handlers that can catch an exception thrown at line 16 do not use the
object, then we can annotate the throwsite at line 16 as being eligible for tsr

(throwsite reduction). When the bytecode corresponding to line 16 is evaluated
at runtime, a virtual machine could check if a tsr annotation exists for this
athrow bytecode, and if this does exist then a dummy placeholder object is
pushed onto the virtual machine’s operand stack.

Code inspection in this case reveals there exists no handler in the example
which would use an exception objected created at line 16. The same cannot be
said, however, for the instance of F thrown at line 17: As T is reachable from S

– via a call to S in line 11 followed by a call to T in line 15 – and as the handler
at line 12 uses the exception object, we cannot mark line 17 as tsr.

The computations for determining tsr annotations uses some of the interme-
diate values prepared for farhandler tables (i.e., the set of reachable handlers for
each node in step 1). We need add only one extra bit of information about each
handler – that is, whether or not the exception object is used by the handler –
and use the following for each throwsite:

1. If a local handler around the throwsite for the exception class exists, then
check if the handler uses the exception object. If so, then the throwsite cannot
be annotated tsr and we proceed to examine the next throwsite.

2. Otherwise we examine all of the handlers for the exception class reach-
able from the throwsite. If no handler uses the exception object, then the
throwsite is annotated as tsr and we proceed to the next throwsite.

3. Otherwise the throwsite is left unannotated.

The usefulness of the tsr annotations, not to mention that of handler in-
formation in farhandlers, is directly affected by the analysis used to build the
callgraph. In the following section we present experimental results where call-
graphs were built using a flow-insensitive analysis, and we can do better than
this but only if we are willing to pay the extra cost at compile time to perform a
flow-sensitive analysis. The analyses now available for object-oriented program-
ming languages (such as Class Hierarachy Analysis [Dean95]) can provide an
even greater levels of precision (i.e., fewer callgraph edges).

4 Experimental Results

We implemented both farhandlers and throwsite reduction using an analyzer
based on the Soot bytecode-manipulation framework [Vale99] and modified an
existing Java virtual machine called SableVM [Gagn01]. Timings provided in the
next two subsections were produced on a Pentium 3 running at 750 MHz and
128 MB RAM running RedHat Linux 7.2. Our experiments were in two groups:
the first was our validation group in which we used the SPECjvm98 benchmarks,
and the other exception-idiom usage group in which a standard algorithm was
converted into an exception-handling style of code.

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

69



4.1 Validation group

As with medical doctors who must administer treatment to patients, our modifi-
cation of the VM should follow the rule from medicine of primum non nocere—
“first of all, do no harm.” Therefore our modified VM should not produce poorer
performance for programs, regardless of whether or not they use exceptions. The
SPECjvm8 benchmark suite allows us to check for this; the version of we used
is maintenance release 1.04, but with two omissions:

– 227 mtrt (a ray-tracing program) raises a ClassCastException that causes
program failure when run with either the unmodified VM or the modified
VM. (The same error occurs when using the HotSpot VM from Sun.)

– 213 javac (Sun’s Java compiler from JDK 1.0.2) causes our Soot-based
analyzer to fail from an OutOfMemoryException (one of life’s little ironies!)
and therefore no farhandler tables or tsr annotations can be generated.

Of the SPECjvm98 benchmark programs tested here, only 228 jack makes
significant use of exceptions, and even then its programmers appear to have
taken special care to eliminate a lot of exception-handling overhead (i.e., the
thrown exceptions are previously created objects, with the object creation cost
amortized over the many throws which use it).

Each benchmark was run on four different VM configurations:

– original: This is the unmodified SableVM;
– fh: modified VM using only the farhandler table;
– tsr: modified VM using only the tsr annotations;
– fh+tsr: modified VM using both the farhandler table and the tsr annotations.

The timings are shown in Table 2. Only 200 check and 228 jack throw any
exceptions at all; the former throws 104 exceptions caught by local handlers,
while the latter throws 241,876 exceptions caught by non-local handlers. What
the results show is that the benchmarks run as fast—if not faster—under the
modified VM as they do under the unmodified VM.

We make two general observations about this data:

1. Only 228 jack throws a significant number of exceptions—all of them to
handlers outside of the throwing method—and the benchmark’s speed is
improved (about 1% on average, with 0.7% in the worst case and 1.2% in the
best case). This gain is significant considering that much other computation
is being performed by the benchmark program.

2. For all of the other benchmark programs, there is no observable difference
(i.e., “no harm”).

4.2 Exception-Idiom Usage group

As a test of the effect of our two optimizations on a practical problem, we
have chosen one for which a file of words must be examined, and a histogram

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

70



Benchmark original fh tsr fh+tsr
200 check 49 49 50 49
201 compress 111635 111418 111475 111564
202 jess 122402 122380 121380 122362
209 db 212402 210672 209706 211114
222 mpegaudio 505410 504821 504667 504856
228 jack 68933 68131 68270 68432

Table 2. SPECjvm98 benchmark timings (milliseconds)

of those words produced (as might be needed by a compression algorithm, for
instance). As each word is input, a binary tree is searched. If the word is found,
the corresponding tree node’s frequency field is incremented. If the word is not
found, then a new node must be created and linked into the existing tree.

Several versions of the program were written:

– SearchLocal uses exceptions to transfer control to node-creation code when
a word is first encountered; all searching of the tree and node creation occurs
within the same method.

– SearchNonLocal also uses exceptions as mentioned above, but now the tree
is searched recursively. Control-transfer for new words now entails unwinding
the stack.

– SearchLocalX and SearchNonLocalX do not use exceptions and perform
searching local and via recursive calls, respectively. These should be the
fastest versions of the programs.

Text files from the Calgary Compression Corpus provided the workload for var-
ious programs [Bell90]. Timing results for for SearchNonLocal are in Table 4.
Each of the individual tests in the corpus corresponds to a table row. The column
labelled “w/o exceptions” is the time (in milliseconds) taken by the unmodified
VM to process the test file with an algorithm that does not use exceptions. There
follow two pairs of columns: the first pair is for a version of the VM not using
the optimizations described here, while the VM of the second pair does support
both farhandlers and throwsite reduction. Each of the “exception cost” columns
represents the contribution made by exceptions to processing a file (e.g., when
computing the histogram for words in bib, exception-handling in the original
VM results in a program running 353% longer than the version of the program
without exceptions, while in the modified VM exception-handling the program
runs only 0.3% longer).

The modified VM is clearly a win. The overhead of using exceptions (i.e.,
the time difference between an exception-free program and exception-rich one)
is low, ranging from .3% to 1.1% for SearchNonLocal. A pleasant surprise from
SearchLocal (results not shown here) is that in some cases there is a speedup

as in that for book1 of about 0.6% [Zast05].

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

71



Using original VM Using modified VM, fh + tsr

file w/o exceptions w/ exceptions exception cost w/ exceptions exception cost
bib 2,445 11,081 353% 2,453 0.3%
book1 20,661 73,255 254% 20,731 0.3%
book2 15,240 48,962 218% 15,338 0.6%
geo 819 2,279 178% 821 0.2%
news 8,645 42,262 388% 8,725 0.9%
obj1 223 1,095 391% 226 1.3%
obj2 2,737 14,949 447% 2,762 0.9%
paper1 1,198 5,895 392% 1,210 1.0%
paper2 1,941 8,269 326% 1,958 0.9%
paper3 1,028 5,922 476% 1,049 2.0%
paper4 276 1,596 478% 279 1.1%
paper5 266 1,573 491% 269 1.1%
paper6 916 4,167 354% 921 0.5%
progc 823 4,160 405% 828 0.6%
progl 1,426 5,281 270% 1,434 0.6%
progp 805 3,644 353% 809 0.5%
trans 1,647 6,713 307% 1,655 0.5%

Table 3. SearchNonLocal timings (milliseconds, 10,000 iterations)

5 Related Work

Some optimizations for improving exception-handling performance are applied
to cases where the throwsite and its handler are within the same method, as in
the LaTTe system [Lee99]. If some method inlining is acceptable, then Exception-

Directed Optimization may be suitable; paths through a callgraph are profiled,
and those paths with a high execution frequency are inlined into one large
method and local optimizations then applied [Ogas01].

A stack-unwinding optimization was proposed by Drew et al. [Drew95] in
which as little state as possible is restored when moving from a frame to its
calling procedure’s frame. State is instead restored incrementally, i.e., only when
a handler is found is the complete state of a procedure’s context restored.

6 A word about Just-In-Time compilation

The results described in the previous section were obtained using a VM sup-
porting only interpreted bytecode. Much recent work on improving the run-time
performance of languages such as Java and C# have focused on Just-In-Time

compilers, i.e., where individual methods are compiled such that they run at
the speed of the underlying machine’s native code (or more precisely, the inter-
preted VM may invoke both bytecode and native-code version of methods). One
assumption therefore may be that the cost of exceptions can be eliminated by a
JITter without any extra analysis or algorithms.

Unfortunately this assumption is woefully inaccurate. Without extra analysis,
a JIT may lead a programmer to believe that exception-handling has an even
higher cost relative to code written without exceptions. This is due to the way
in which a language’s runtime deals with exceptions, i.e., non-local exceptions

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

72



Non-exceptions cost

Cost of exceptions

N
o

 J
IT

JI
T

W/O optimizations With optimizations

Fig. 3. Interaction of JIT-compilation with optimizations

invoke code within the interpreted VM for transferring control from the throwsite
to the handler. One way of visualizing this is shown in Figure 3; each of the
quadrants represents the contribution to the overall cost of the execution (in
this case the processing of bib from the Calgary Compression Corpus in the
experiments just described). If a JIT produces a modest five-fold increase in
execution speed for JIT-compiled methods and exceptions are still dealt with as
previously, then what the programmer experiences appears in the left side of the
diagram – the relative contribution of exceptions relative to the “unexceptional”
code – appears much larger even though the absolute contribution is unchanged.

We argue that our optimizations are even more important for a JIT compiler
than for a purely interpreted VM. This can be seen in the right-hand side of
Figure 3 where the exception cost is now very small, such that the five-fold
increase in performance offered by the JIT is – for all intents and purposes –
achieved in the presence of exception handling.

7 Conclusion

We have presented two new optimizations which are designed to improve the
performance of exception handling. Our main goal, however, is to make the use
exceptions more attractive to practioners such that they need not be concerned
about the runtime cost (or at least not unduly concerned). We have shown that in
cases where exceptions are used to express control flow, nearly all the overhead of
exceptions can be eliminated. Extensions to these techniques to cover a larger set
of cases, such as those where some handlers use the stack trace but not all do (lazy

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

73



stacktrace construction), or where some handlers use the exception object but
not all do (lazy exception-object creation). Our current analyses require access to
the whole program, but a more incremental approach towards farhandler-table
construction (and tsr annotations) would combine well with JIT technology
(i.e., perform analysis as classes are loaded into the VM). However, much work
is still needed to improve the performance of code in the presence of exceptions,
specifically analyses to mitigate the negative impact of exceptions on traditional
compiler optimizations (for example, Factored Control-Flow Graphs [Choi00].
There also remains the hard work of convincing programmers that exceptions
can improve the readability and maintainability of programs, and perhaps this
can be achieved via the identification of useful exception idioms or exception

patterns.

References

[Card89] Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kaslow, B. and Nelson,
G.: Modula-3 Report (revised), Digital Systems Research Centre. 1989.

[Choi00] Choi, J., Grove, D., Hind, M., and Sarkar, V.: Efficient and Precise Mod-
elling of Exceptions for the Analysis of Java Programs, in Proceedings of the
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE ’99), pp. 21–31.

[Dean95] Dean, J., Grove, D. and Chambers, C.: Optimization of Object-Oriented Pro-
grams using Static Class Hierarchy Analysis, in Proceedings of the European Confer-
ence on Object-Oriented Programming ’95, pp. 77–101, Springer-Verlag. 1995.

[Drew95] Drew, S., Gough, K. and Ledermann, J.: Implementing Zero Overhead Ex-
ception Handling. Technical Report FIT 95-12, Queensland University of Technology.
1995.

[Gagn01] Gagnon, E. and Hendren, L.: SableVM: A Research Framework for the Ef-
ficient Execution of Java Bytecode, in Proceedings of the Java Virtual Machine Re-
search and Technology Symposium (JVM ’01’), pp. 27–40, ACM Press. April 2001.

[Lee99] Lee, S., Yang, B., Kim, S., Park, S., Moon, S., Ebcioğlu, K., and Altman, E.:
On-Demand Translation of Java Exception Handlers in the LaTTe JVM Just-In-Time
Compiler. In Proceedings of the Workshop on Binary Translation. October 1999.

[Ogas01] Ogasawara, T., Komatsu, H., and Nakatani, T.: A study of exception han-
dling and its dynamic optimzation in Java. In Proceedings of the OOPSLA ’01 Con-
ference on Object-Oriented Programming Systems, Languages and Applications, pp.
83–95, ACM Press. October 2001.

[Ryde00] Ryder, B., Smith, D., Kremer, U., Gordon, M., and Shah., N.: A Static Study
of Exceptions Using JESP. In Proceedings of Compiler Construction 2000, pp. 67–81.
April 2000.

[Shir00] Shirazi, J.: Java Performance Tuning, O’Reilly and Associates, Inc. 2000.
[Vale99] Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagon, E., and Co, P.:

Soot – A Java Optimization Framework, in CASCON 1999, pp. 125–135. September
1999.

[Bell90] Bell, T., Cleary, J., and Witten, I.: Text Compression, Prentice-Hall, Inc. 1990.
[Zast05] Zastre, M.: The Case for Exception Handling. PhD Thesis, University of Vic-

toria (2004).

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

74




