
Code Hunt: Experience with Coding Contests at Scale

Judith Bishop

Microsoft Research

Redmond, WA, USA

jbishop@microsoft.com

R. Nigel Horspool

University of Victoria

Victoria, BC, Canada

nigelh@cs.uvic.ca

Tao Xie

University of Illinois at

Urbana-Champaign

IL, USA

taoxie@illinois.edu

Nikolai Tillmann,

Jonathan de Halleux

Microsoft Research

Redmond, WA, USA

nikolait,

jhalleux@microsoft.com

Abstract—Mastering a complex skill like programming takes

many hours. In order to encourage students to put in these hours,

we built Code Hunt, a game that enables players to program

against the computer with clues provided as unit tests. The game

has become very popular and we are now running worldwide

contests where students have a fixed amount of time to solve a set

of puzzles. This paper describes Code Hunt and the contest

experience it offers. We then show some early results that

demonstrate how Code Hunt can accurately discriminate between

good and bad coders. The challenges of creating and selecting

puzzles for contests are covered. We end up with a short

description of our course experience, and some figures that show

that Code Hunt is enjoyed by women and men alike.

Index Terms—Programming contests, unit tests, symbolic

execution, Code Hunt game

I. INTRODUCTION

Two of the backbones of software engineering are

programming and testing. Both of these require many hours of

practice to acquire mastery. To encourage students to put in

these hours of practice, educators often employ the element of

fun. Generally, this involves setting engaging assignments

which emphasize the visual, audio, mobile and social world in

which the students now live. However, a common complaint in

second or third year is that “students can’t program” which is

usually interpreted as meaning they are not able to produce code

readily for fundamental algorithms such as read a file or search

a list. Recruiters in industry are famous for requiring applicants

to write such code on the spot. Thus there is a dichotomy: how

to maintain the self-motivation of students to practice coding

skills, and at the same time focus on core algorithmic problems.

An answer is to use the challenge of a game. Games are

everywhere these days, and the motivation to score, do better

and complete the game is very high. We are familiar with the

concept of playing against the computer, and the sense of

achievement that is acquired when goals are reached or one

wins. Winning is fun, and fun is seen as a vital ingredient in

accelerating learning and retaining interest in what might be a

long and sometimes boring journey towards obtaining a

necessary skill.

In the context of coding, there have been attempts to

introduce fun by means of storytelling [8], animation

(www.scratch.mit.edu) and robots (e.g. www.play-i.com).

Code Hunt adds another dimension – that of puzzles. It is with

these ideas in mind that we conceived Code Hunt, a game for

coding against the computer by solving a sequence of puzzles

of increasing complexity. Code Hunt is unique among coding

systems and among games in that it combines the elements of

both to produce just what we need to get students to put in those

hours of practice to hone their programming skills. Along the

way, they also learn to understand testing, since the game is

based on unit tests. Code Hunt has been used by over 50,000

players, and we have figures to support the claim that they enjoy

the game, stay with it, and acquire mastery in coding.

Learning to code by solving puzzles is not the same as

learning to code by writing to a specification. There are many

contests where students pit their wits against each other – and

against the clock – to create a solution to defined problems. This

kind of coding is similar to that which they encounter in courses

or later in their careers. Code Hunt is different in that learning

to code is a by-product of solving a problem which is presented

as pattern matching inputs and outputs. The fun is in finding the

pattern.

In previous work, we discussed the technical challenges of

building Code Hunt, as well as its predecessor Pex4Fun [12].

[13] [14] [14]. This paper concentrates on the insights that we

are acquiring into the behavior of players through controlled

play via contests. We have run 14 contests to date, with varying

sizes and audiences, and are beginning to gain some

understanding of the motivating and demotivating factors that

can affect performance in the game. Our figures feed back into

further contests and improve the experience for players, as

happens with most games.

In Sections II and III we describe Code Hunt, the game, as

well as its architecture built on Azure. Sections IV and V

present our results of running contests on Code Hunt, and how

to create a contest. Section VI discusses briefly how Code Hunt

can also be used for courses. Sections VII and VIII wrap up with

Related Work and Conclusions.

II. BACKGROUND TO CODE HUNT

Code evaluator systems are very popular, with the growth in

student numbers and the popularity of MOOCs. These systems

work on the basis of a problem specification and a set of test

cases to establish if the student has achieved an acceptable

http://www.scratch.mit.edu/
http://www.play-i.com/

program. Several years ago, we released Pex4Fun

www.pex4fun.com which did the opposite: presenting an empty

slate to the user and only a set of constantly changing test cases

[13] – there is no specification. To solve a puzzle (called a duel)

in Pex4Fun, the player iteratively modifies code to match the

functional behavior of a secret solution. The player is guided by

the set of test cases automatically generated by a white-box

testing tool called Pex [11]. These show for a selection of

sample inputs when the player’s code and secret code have the

same outputs or different outputs. As a state-of-the-art

implementation of dynamic symbolic execution, Pex [5]

conducts path exploration partly guided by fitness values

computed via a fitness function.

Although Pex4Fun was, and is, very popular, we wanted to

extend its capabilities as a game and investigate how far we

could retrofit the data that is mined to provide hints to the

player. We also wanted to bring the game to a larger audience

with more languages. Thus Code Hunt was born (Figure 1).

.

Figure 1 The opening screen of Code Hunt

III. CODE HUNT

A. Overview

Code Hunt is a serious game where the player has to write

code to advance. Code Hunt runs in any modern browser at

www.codehunt.com; see Figure 1 for the splash screen. The

built-in tutorial reveals the following story to the player:

Greetings, program! You are an experimental
application known as a CODE HUNTER. You, along

with other code hunters, have been sent into a
top-secret computer system to find, restore, and

capture as many code fragments as possible. Your
progress, along with your fellow code hunters, will

be tracked. Good luck.

The game is structured into a series of sectors, which in turn

contain a series of levels. In each level, the player must write

code that implements a particular formula or algorithm.

As the code develops, the game engine gives custom

progress feedback to the player. It is part of the gameplay that

the player learns more about the nature of the goal algorithm

from the progress feedback. Figure 2 shows the feedback loop

between the player’s code in the browser and cloud-based game

engine.

The player can write code in an editor window, using either

C# or Java as the programming language. This code must

implement a top-level function called “Puzzle”. The puzzle has

some input parameters, and it returns a result. The player has

only one way to test if the current code implements the goal

algorithm: by pressing on a big “CAPTURE CODE” button.

Figure 2 Game play

Pressing this button causes a chain of events:

1. The code is sent to a server in the cloud.

2. The server compiles the code (including a Java-to-C#

conversion when required).

3. The server starts an in-depth analysis of the code,

comparing it to the goal algorithm.

4. The results are returned and shown to the player.

The result is either a compilation error, or a list of

mismatches and agreements with the goal algorithm. Figure 3

shows the code on the left, and the mismatches (red crosses) and

agreements (yellow checkmarks) are shown on the right.

Figure 3 The Code Hunt main page, showing test results

If the code compiles and there are no mismatches and only

agreements with the goal algorithm, the player wins this level –

or as the game puts it, the player “CAPTURED!” the code, as

shown in Figure 4.

Figure 4 After solving a puzzle, the player gets a score

The in-depth analysis returns each mismatch and agreement

with the goal algorithm in the form of a tuple (input, actual

result, expected result).While the actual and expected result are

the same when the player’s code is in agreement with the goal

algorithm, they are different when there is a mismatch. The

player must inspect the mismatches and determine how to

change the code to make it more like the goal algorithm. In other

code

feedback

words, the player must reverse-engineer a secret algorithm, and

write semantically equivalent code.

B. Skill ratings and score

When the player successfully completes a level, the Code

Hunt game engine assigns a “skill rating” to the player’s code.

The rating, an integer 1, 2, or 3, reflects the elegance of the

solution, measured by its succinctness (a count of instructions

in the compiled .NET intermediate language). 1 indicates that

the solution is much longer than most other submitted solutions,

2 means about average, and 3 means significantly shorter.

The intention behind the skill rating is that it may motivate

players to keep tinkering in a particular level in order to improve

their code, thus greatly extending the gameplay time. This

rating is multiplied by a level-specific value that reflects the

difficulty of the level, resulting in the “score” for this level.

Figure 4 shows the rating 1, and a score of 2 (implying a

multiplier of 2 for this level), after the player completed a level.

Players can track their progress via an accumulated total score.

To determine whether the player’s code implements the goal

algorithm correctly, Code Hunt leverages the white-box testing

of Pex, which implements an automated program analysis

technique based on dynamic symbolic execution.

C. Architecture

Code Hunt is a true cloud-based system hosted in Windows

Azure. A player requests the page www.codehunt.com which is

served from a front-end cloud app. If the player chooses to log

in, Windows Azure Active Directory Access Control delegates

authorization to one of the identity providers (Microsoft,

Facebook, Google, Yahoo). Once the player engages in any

particular level, a back-end cloud app is invoked at

api.codehunt.com. The back-end exposes a publicly accessible

REST-based service API which performs the actual program

analysis tasks, and also persists user-specific data in Windows

Azure Store. Guarded by an OAuth v2 authorization scheme,

the back-end is available for use by other clients. We welcome

other researchers who are interested in using this platform for

other research topics.

Both the front-end and the back-end have been designed for

maximum scalability, dynamically increasing the number of

cores available to serve an arbitrary number of users. To

illustrate the need for scalability, consider that each concurrent

user of Code Hunt who presses the “CAPTURE CODE” button

as part of the gameplay potentially causes a single core of the

back-end to be busy analyzing the submitted code for up to 30

seconds. Many cores are necessary to support the users at peak

times (during a contest), while very few cores may be needed at

other times.

IV. CODE HUNT FOR CONTESTS

Soon after Code Hunt was launched in March 2014, there

was interest from three different groups in Microsoft to use the

tool in a contest environment. Put together, the accumulated

advantages of Code Hunt were seen as:

1. The browser-based nature of the game gave it a world-

wide reach on all platforms.

2. Automatic grading of the contest is cost effective.

3. Cloud based hosting means the ability to scale to

thousands of players or more.

4. Prestige of the tool coming from Microsoft Research

gives trust in its accuracy.

5. Clear scoring criteria implies preciseness of

determining winners.

6. Results after the contest can be used by recruiters to

get back to top coders.

7. The contest is fun, fresh and different.

We therefore embarked on partnerships to run online

contests world-wide. We collected data on how students

performed and the effect of puzzle difficulty on their

performance. Our early results and observations are

summarized in this section.

A. Puzzles and their difficulty

Puzzles are what Code Hunt is all about. We have a Puzzle

Bank which is continually refreshed, since a contest requires

puzzles that students have not seen before. For a contest, we

need between 6 and 24 puzzles, depending on the length, in

hours, of the event. When storing a puzzle in the bank, we

annotate it with various properties, i.e.:

1. ID number: an integer

2. Group: numbers, strings, bools, arrays, binary

3. Description: a sentence describing the puzzle

4. Source: initials of the puzzle designer

5. Difficulty: a subjective rating between 1 and 5

A typical puzzle might be:

P067

arrays

Remove duplicates from an array

APCS

2

For the integrity of the game and contests, the descriptions

are highly protected, and are known only to the puzzle and

contest designers.

Once the time period of a contest is decided, the contest

designers set about creating, adapting or re-using puzzles. In

this process, the difficulty values are critical. For a successful

contest, one needs to have easier puzzles in the early sectors,

leading up to more challenging puzzles in latter sectors. The

average difficulty of all puzzles in a typical contest is usually

around 2.5, but skewed as described.

The challenge is that contests need to have mostly new

puzzles, and the difficulty that we assign to them is subjective.

Figure 5 Dashboard from a contest

We do not know in advance how they will be perceived by

players. Early on, we discovered that there were puzzles that

simply fooled most players. They got stuck on that level and

could not continue, or gave up. This effect can be seen in the

dashboard from a contest shown in Figure 5. (The red squares

indicate puzzles which have been attempted but not yet solved.)

Clearly, some feedback into adjusting the difficulty factor

would help in determining a puzzle’s future use.

The score that players receive for solving a puzzle is, as

described above, based on a rating of 1, 2 or 3. That was deemed

too rough a measure for adding information to puzzles. The

other metric we record is the number of attempts it took a player

to solve a puzzle. Solving a puzzle in Code Hunt involves two

steps: first recognize the pattern represented by the clues, and

then code the algorithm. Pressing the “Capture Code” button is

used by players to get more clues so that they can discover the

pattern. The column of red ratings in Figure 5 indicates that

most players had not yet solved the puzzle at all. Two players

had solved the puzzle (green rating) but one of them took 108

attempts to get there. While extreme, it is not unusual for

players to spend this long on a puzzle.

B. Tries as a difficulty measure

An alternative to average score achieved for a puzzle is

therefore to look at the average tries made. In an initial

validation of this hypothesis we examined a large contest and

found the results as in Table I. Thus the top players (as

determined by score) spent five or more times fewer tries on

solving a puzzle than others. This bias has been maintained in

further contests, though not always as dramatically. The ratio

depends on several factors that we have ascertained from

speaking to students and from surveys:

1. mix of students who enter

2. the internet speed

3. experience with using a powerful IDE

TABLE I AVERAGE TRIES ACROSS LAYERS AND TOP PLAYERS

Group Count Average tries per

level

All players 2,353 41.0

Top players 350 7.6

In the case of 3, students are known to develop code offline

and submit it to Code Hunt when the compilation is error free,

for example. For 2, with a slow connection, students spend more

time studying the clues and their code, and press the Capture

Code button less often.

However, the scale of our data is considerable, and is able to

smooth out these effects, we believe.

C. Adjusting puzzle difficulty

Thus we use average attempts (or tries) for a puzzle in a

contest to calculate a new difficulty for the puzzle. Using a

weighted average over the number of players who solved the

puzzle, we feed that information back into the puzzle bank.

Our formula for the new perceived difficulty is:

a + tries/b + tries/c * distance

where a = 1, b = 20, c = 50 and tries is the average attempts for

all players who solved the puzzle and distance is the number of

levels solved so far. The last factor in the equation gives a

weighting to the skill of a player: they are assumed to get better

at coding as they solve more puzzles.

Using this formula, we can recalculate the Perceived

Difficulty, D, of any contest, over all users and puzzles. Two

examples stand out. In Table II we show a contest run in April

2014 over four rounds. Except for the first qualifying round, the

puzzles were perceived as easier by the large numbers of

players.

TABLE II CONTEST A - SAME COMMUNITY

Contest A (same

community)

Subjective

difficulty

Perceived

difficulty

Players

who started

Qualification 1.59 2.72 13773

Preliminary A 2.17 1.84 1017

Preliminary B 2.50 1.84 141

Semi-Final 2.60 2.22 1164

In another example, Table III, we gave the same contest to

two different groups and they perceived it somewhat

differently, although both spent more attempts on the puzzles

than we would have expected. Here the sample size is much

smaller. In adjusting the difficulty of puzzles, we take the

number of players into account.

TABLE III CONTEST B - DIFFERENT COMMUNITIES

CSTA and

TEALS

(identical

contests)

Subjective

difficulty)

Perceived

difficulty

Players who

started

Students 1.96 5.22 61

Teachers 1.96 4.38 14

D. Outliers

We would like to know whether there are certain kinds of

puzzles that are consistently more difficult than others.

Consider these examples:

Players Average tries Sector.level

1683 3.88 3.3

376 45.08 5.2

Computing the difficulty according to the formula above

gives:

D = 1 + 3.88/20 + 3.88 * 14 / 50 = 2.68

Original difficulty estimate was 2

D = 1 + 45.08/20 + 45.08 * 25 / 50 = 25.79

Original difficulty estimate was 2

In both cases, the perceived difficulty, D, increased, but by

markedly different amounts. With a perceived difficulty of 26

(rounded up), the second puzzle qualifies as an outlier. We

therefore increase its difficulty in the bank, but we also examine

it along with other outliers for common qualities.

In our bank of 250 puzzles, we have around 15 puzzles that

qualify as outliers. From the contests we have run so far, we

cannot make any firm conclusions about common factors,

because most of the puzzles are not used more than once, and

therefore we do not have corroboration as to their perceived

difficulty across player populations. However, applying this

process in another part of Code Hunt has revealed more

definitive results.

E. The effective of difficulty on player drop off rates

In addition to contests, which are put up for a set time of up

to 48 hours, Code Hunt also has a default zone, where anyone

can play and learn programming. The puzzles in the default

zone follow the APCS computing curriculum [1] and start with

arithmetic, loops, strings, arrays and so on. The figures for this

zone are impressive: over 45,000 have started playing, and 120

players have completed all 130 puzzles. There is a drop off rate

which is about constant at 15% initially then decreases as

players become more expert and want to finish the game. Yet

there are some dramatic drops and we examined what might be

causing these.

Figure 6 shows the drop off rate for just the first 3 sectors.

In Figure 7Figure 7 Puzzles with drop off rate higher than 15%,

we can detect three effects where the previous puzzle caused

more than a 15% drop off. These are itemized in Table IV

Puzzles that cause a high drop off rate

TABLE IV PUZZLES THAT CAUSE A HIGH DROP OFF RATE

Color Puzzles Description

Yellow Previous: 1.5, 1.6,

1.10, 1.15

Division

Blue Previous: 1.12,

3.1

Unusual operators

Green Actual: 1.1, 21.1,

2.2

Previous: 3.4

Start of sector and

start of loops

Unusually tricky

puzzle

These results, based on tens of thousands of players (and

hundreds of thousands of programs) taken over a six month

period are surprising, but definitive. It would seem that division

(which did not occur in other puzzles in these sectors) is

difficult for players to detect. Our reading is that they just do

not think of it, but we would need to do a more detailed study

to confirm this hypothesis. Unusual operators such as mod and

the bitwise binary operators (namely ~, &, | and ^) are also

problematic. Finally, there is a drop off effect in this zone when

new concepts are introduced. Code Hunt is not a teaching game

– it is for drill and practice and learning about algorithms and

testing. At present, there is no teaching material on the site.

Thus students who move from the Arithmetic sector to the

Loops sector, might not be able to cope.

Figure 6 Drop off rate in the APCS Zone, first three sectors

Figure 7 Puzzles with drop off rate higher than 15%

F. User loyalty

We are fortunate to be able to view analytics across a wide

range of objects – contests, users, puzzles etc. A figure that we

track is how many users do we have per day, and do they return.

This information is relevant for the default zone, not for contests,

but it verifies the continued interest in Code Hunt from all over

the world. We extracted figures for the past month (mid-

September to mid-October 2014) when there were an average of

1,150 users per day on the system. Figure 8 shows that on

average the ratio of new to returning users is 50%, which is very

healthy for a system online.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

1
.1

0
1

.1
1

1
.1

2
1

.1
3

1
.1

4
1

.1
5

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

P
la

ye
rs

Sector and Level

APCS Zone, First three sectors, 45K to 1K

Figure 8 New versus returning users

During this period, the game was used globally, as shown in

Figure 9. We have promoted Code Hunt in Europe and North

America; the interest in South America grew organically.

Figure 9 Global usage of Code Hunt

G. Gender Bias

Whenever there is a coding event, questions regarding

gender arise. Is the experience attractive to females? Our figures

bear out that the number of females playing and enjoying Code

Hunt is 12% which is commensurate with the 12.5% reported

number of women enrolled in undergraduate degrees in the

USA [18]. Code Hunt is globally available, but the USA figures

are a good indicator of international trends. Table V shows

some figures taken from an open survey with 850 attendees.

TABLE V SURVEY RESULTS BY GENDER

 Female Male

Respondents 98 or 12% 682 or 80%

Played as practice

for a course in C#

11% 18%

Played as practice

for a course in Java

40% 23%

Played for own

enjoyment

47% 57%

V. CREATING A CONTEST

Code Hunt is an open system and it is possible for anyone to

create their own contests. Once logged in, there is a window that

is accessed through the Settings→Designer buttons. At this stage

a window very similar to the main window appears (Figure 3).

On the left is described the skeleton of a puzzle, as in Figure 10.

First there is the standard blank algorithm that the player sees.

The formal parameters and result type of the Puzzle method can

be edited to suit different types of puzzles. Then there is the

secret solution.

Figure 10 Designing a Puzzle

To prepare a puzzle, the designer creates code in the secret

solution and can test it out with the usual Capture Code button,

until it is working correctly. Thereafter it can be uploaded. A

URL pointing to the puzzle will be returned and it can be shared

with others to play.

That experience is for one puzzle. For a complete contest,

comprising many puzzles in a zone, they would need to be

tested one by one and then the whole list of puzzles, complete

with zone and sector tags, would be uploaded. Instructions are

given in the URL shown.

While this is the mechanics of creating a contest, finding

appropriate puzzles is not easy. Moreover, it is also necessary

to make calls on the Pex framework to constrain the trial cases

and to add statements which have the effect of suggesting some

test cases to Pex. Such test cases will appear in the table of unit

test results. The details of this are beyond this paper, but can be

found in [13].

Days between 09/19/14 – 10/20/2014

VI. CODE HUNT FOR COURSES

To assist teaching and learning, our future work is to adopt

Code Hunt in courses, in a formal setting (such as college or high

school courses) or an informal setting (such as self-training

courses for learning specific topics). We have experience of

using puzzles in courses through Pex4Fun in a graduate software

engineering course with more than 50 enrolled graduate students

[17]. The puzzle assignments were organized according to

selected topics in software engineering: requirements, design

patterns, and testing. The classroom experiences with using

puzzles were very encouraging. Grading efforts of the teacher

were substantially reduced. More importantly, students’ learning

process (beyond their final puzzle solutions) along the way was

made available to the teacher or teaching assistant. Students had

fun while solving problems and improving their learning.

Based on our initial experiences on using puzzles with

Pex4Fun in a classroom, we can itemize the features that Code

Hunt would need by an instructor who would adopt Code Hunt

in a classroom setting. Some of these exist already, but not all.

1) Allow access to student attempts

Allowing access to the sequence of code versions attempted

by a student can reveal the puzzle-solving process The instructor

can gain insights for diagnosing any learning barriers that the

student has and provide customized and personalized guidance

to that student, and other students in the class sharing similar

problems. Given that manually inspecting the puzzle-solving

process can be tedious for a typical-size class, it is desirable to

provide tool support to the instructor in order to efficiently

discover such insights from the rich data that Code Hunt has. We

have already shown in Section IV.C how we can mine the data

to make general statements across all players: for a course we

need to delve into a particular student’s work

2) Integrate instructional material

For a course experience, Code Hunt could provide a

seamless integration of course instructional contents and their

corresponding puzzles. One way is to have marked up pages

with embedded puzzles which can be viewed as interactive

textbook pages, providing a learning aspect to Code Hunt as well

as a practice aspect. Such pages would alleviate the problem of

students encountering new features, as mentioned in Section 0.

In a more ambitious effort, in May 2015, Microsoft released the

Office Mix add-in for PowerPoint 2013

(https://mix.office.com/). Office Mix allows users (such as

instructors) to record audio and/or video of themselves

presenting, write on slides as the users speak to them, insert

quizzes, polls, online videos, or even Code Hunt puzzles. Figure

11 shows the start of an interactive presentation. Office Mix

records every viewing of a Mix, as well as the number of slides

seen, and whether the Code Hunt puzzles were solved. These are

provided as analytics to the creator of the Mix, as shown in

Figure 12. For this Mix, there have been 193 visitors. The

column “Answer” provides either the program given by the

student or the score, e.g. 127 out of a possible 137.

There is an enhancement coming to Mix where the individual

attempts at a puzzle can be seen, as required by 1) above.

Interactive textbooks in Code Hunt and interactive presentations

in Office Mix are complementary, both enabling effective

integration of instructional contents and puzzles.

Figure 11 An Office Mix persentation

Figure 12 Analytics page from Office Mix

3) Provide hints

In a learning environment it is desirable to provide additional

hints to students when they get “stuck” in solving a puzzle.

Coding contests are run without such additional hints. However,

they are essential in a course setting with focus on improving

student learning. Hints can provide the same assistance as an

instructor does during office hours when a student drops by to

seek help with a coding issue. Code Hunt already has an initial

feature for producing additional hints [14]. Our future work

plans to further enhance this feature for maximizing student

learning effect.

VII. RELATED WORK

On-line competitions which exercise the contestants’ ability

to understand and/or write code have been operating for several

years. The typical format of a competition is for a set of

algorithmic problems to be described, and then the contestant

or a team of contestants have to write and submit code which

solves the problems while the clock is ticking. Some of the best

known competitions which follow this general pattern include

the Data Science track of TopCoder [15], the annual ACM

International Collegiate Programming Contest [9], Google

Code Jam [6], and the Facebook Hacker Cup [4].

While such competitions serve a valuable purpose in

challenging and identifying some of the best programmers in

the world, they are not intended to impart any programming

skills to the contestants. Many authors claim that competitions

like these excite interest in computer programming, but that is

about all that can be claimed for them. As Combefis and

Wautelet explain [3] these contests do not provide individual

feedback to the contestants and do not support training and

learning. They applaud Nowicki et al. [10], however, for

providing an example of a competition style that works. Here,

the competitions were held weekly and supplement the teaching

in a high school course. The problems match the concepts

covered in the course each week. A similar series of

competition-style problems related to computer science

concepts was described by Voigt et al. [16], and these too could

be useful as an adjunct to an introductory programming course.

However, none of the competitions mentioned above come

close to the approach provided by Code Hunt. The closest in

spirit is probably Bug Catcher [2]. In this competition, the

contestants do not need any programming skills to enter. They

are presented with a series of code fragments which contain

bugs, and the goal is to create test cases consisting of inputs and

the corresponding expected outputs which illustrate the bugs.

The goal of Bug Catcher is to teach software testing topics to

high school students in a step by step manner.

Code Hunt is extremely flexible in how it can be used. A

graduated series of exercises, which introduce and test ability

with a particular programming construct, can be supplied as

puzzles to Code Hunt. There is such a set of puzzles which

correspond to the Advanced Placement Computer Science

course curriculum [1]. Puzzles are grouped into sectors, with

each sector exercising a different construct in Java. This is an

approach similar to Bug Catcher, but helps students learn

programming skills rather than software testing skills. Of

course, if the goal is to use Code Hunt to identify fast accurate

coders, similarly to Google Code Jam, say, then difficult

puzzles which will require contestants to provide non-trivial

code as the solutions can be employed. This has been the

approach adopted in the Code Hunt competition track of

Microsoft’s Imagine Cup [7].

VIII. CONCLUSIONS

Code Hunt is a powerful and versatile platform for coding

as a game. It is unique in that requires players to work out what

to do from unit tests, rather than giving them a specification.

This aspect of Code Hunt adds to the fun, and can be mined in

contests. In this paper we described how contests are set up and

some of the challenges in ensuring that puzzles are correctly

rated. The sheer numbers of players (tens of thousands) make it

possible to test hypotheses and come to reasonable conclusions

about how players are mastering coding, and what holds them

up.

In future work, we are going to perfect the course

experience, and also add a club experience, augmenting the do-

it-yourself contest process described above. In the back end, we

have a system in place that generates hints when users are stuck:

it is currently under testing and will be rolled out soon.

At the moment, only C# and Java are supported on Code

Hunt. Java programs are actually source translated to C#

programs. We have plans to include Python using the same

mechanism very soon.

Finally, a responsibility of large games such as these is to

keep them fresh. The contests contribute to this, but it is also

necessary to periodically update the default zone. A refresh is

planned for January 2015. Naturally, care will be taken to

preserve the data on sequentially ordering of puzzles so we can

continue to delve into it and find out more about how students

learn with games.

IX. ACKNOWLEDGMENTS

We would like to thank our interns Daniel Perelman and

Alisha Meherally who were members of the team in the summer

of 2014 and made significant contributions to the platform.

X. REFERENCES

[1] AP Computer Science A Course Home Page.

http://apcentral.collegeboard.com/apc/public/courses/teachers_co
rner/4483.html, accessed 21-Oct-2014.

[2] Bryce, R., Andrews, A., Bokser, D., Burton, M., Day, C.,

Gonzalez, J., Mayo, Q., Noble, T. Bug Catcher: A System for

Software Testing Competitions, SIGCSE '13 Proceedings of the

44th ACM technical symposium on Computer Science Education.
pp 513-518.

[3] Combéfis, S., Wautelet, J. Programming Trainings and

Informatics Teaching Through Online Contests. Proceedings of
Olympiads in Informatics, 2014, Vol. 8, pp 21–34.

[4] Facebook Hacker Cup website,
https://www.facebook.com/hackercup/, accessed 21-Oct-2014.

[5] Godefroid, P., Klarlund, N., and Sen, K. DART: directed
automated random testing. In Proc. PLDI (2005), pp 213–223.

[6] Google Code Jam website, https://code.google.com/codejam,
accessed 21-Oct-2014.

[7] Imagine Cup website. https://www.imaginecup.com/, accessed 21-
Oct-2014.

[8] Kelleher, C., and Pausch, R. F.: Using storytelling to motivate
programming. Comm. ACM, July 2007/Vol. 50, No. 7, pp 58-64.

[9] Official ACM-ICPC website, http://icpc.baylor.edu/, accessed 21-
Oct-2014.

[10] Nowicki, M., Matuszak, M., Kwiatkowska, A., Sysło, M., Bała, P.

Teaching secondary school students programming using distance

learning: a case study. Proceedings of the 10th World Conference

on Computers in Education (WCCE 2013).

[11] Tillmann, N., and de Halleux, J. Pex – white box test generation

for .NET. In Proc. TAP (2008), 134–153.

[12] Tillmann N, de Halleux J, Xie T, Gulwani S, Bishop J: Teaching

and learning programming and software engineering via
interactive gaming. ICSE 2013: pp 1117-1126

[13] Tillmann, N., de Halleux, J., Xie, T., and Bishop, J.,, Constructing

coding duels in Pex4Fun and code hunt, ISSTA 2014 Proceedings

of the 2014 International Symposium on Software Testing and
Analysis, pp 445-448

[14] Tillmann, N, de Halleux, J., Bishop, J., Xie, T, Horspool, N.,

Perelman, D. Code Hunt: Context-Driven Interactive Gaming for

Learning Programming and Software Engineering. In Proc.

International Workshop on Context in Software Development

(CSD 2014), to appearTillmann, N., de Halleux, J., Xie, T.,

Gulwani, S., and Bishop, J., Teaching and Learning Programming

and Software Engineering via Interactive Gaming. In Proc. ICSE

(2013), pp 1117–1126.

[15] TopCoder™ website, http://www.topcoder.com, accessed 21-Oct-

2104.

[16] Voigt, J., Bell, T., Aspvall, B. Competition-style programming

problems for computer science unplugged activities. In: E. Verdu,

R. Lorenzo, M. Revilla, L. Regueras (Eds.), A New Learning

Paradigm: Competition Supported by Technology. 2010. Boecillo:
CEDETEL, 207–234.

[17] Xie, T., Tillmann, N., de Halleux, J., Schulte, W. Fitness-Guided

Path Exploration in Dynamic Symbolic Execution. In Proc. DSN

2009, 2009, pp 359-368.

[18] Zweben S, Computing degree and enrollment trends from the

2011-2012 CRA Taulbee Survey

