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Abstract
Partial redundancy elimination has become a major com-
piler optimization that subsumes various ad hoc code
motion optimizations. However, partial redundancy elimi-
nation is extremely conservative, failing to take advantage
of many opportunities for optimization. We describe a new
formulation of partial redundancy elimination based on a
cost-benefit analysis of the flowgraph. Costs and benefits
are measured by the number of evaluations of an expres-
sion. For that reason, our technique requires estimates for
the execution frequency of every edge in the flowgraph. The
new technique is much more aggressive, performing more
code motion and thereby reducing the number of expres-
sion evaluations as compared to the standard optimization.

1. Introduction

Partial redundancy elimination (which we abbreviate to
PRE) is a technique which first appeared in the dissertation
of Étienne Morel and was published in a 1979 CACM arti-
cle of Morel and Renvoise [13]. PRE sets up a system of
dataflow equations for code motion transformations. Solu-
tions to the equations show where new computations of
expressions should be inserted and where existing compu-
tations should be deleted, thus achieving code motion (as
well as subsuming a standard optimization for eliminating
redundant expression computations).

A simple example of PRE appears in Figure 1. This
example focuses solely on one expression, namelya+b.
All extraneous detail has been suppressed. It does not mat-
ter for the purposes of PRE optimization what values are
assigned toa or b; thus we show an assignment toa as
simply

a = ...
Similarly, it matter how thea+b  expression is used; thus a
statement that uses (i.e. needs the value of)a+b  is shown
as

... = a+b
The use ofa+b  in block 4 is said to be partially redun-

dant. If control enters block 4 from block 3 it needs to be

evaluated (i.e. it isnot redundant), but if control enters
from block 7 then the expression is redundant because the
value ofa+b  computed in block 6 could have been saved
in a temporary location and made available for re-use in
block 3. Solving the Morel and Renvoise equations leads to
these results:

Insert[3] = { a+b }
Insert[i] = φ,  i  3

Redund[4] = { a+b }
Redund[i] = φ, i  4

The solutions for theInsert set instruct us to insert a
new computation ofa+b  at the bottom of block 3; the solu-
tions for theRedund set instruct us to delete the first
(exposed) use of expressiona+b  in block 4 because that
expression is or has become fully redundant. We can view
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the Insert andRedund sets as implementing code motion;
they tell us, in effect, to move a computation from block 4
to block 3.

The Morel and Renvoise equations are, however, imper-
fect because they sometimes cause expressions to be
moved unnecessarily or to be moved too far. Unnecessary
code motion is undesirable because it increases the life-
times of variables and thus increases register pressure.
That, in turn, can have adverse effects on the quality of the
generated code. A number of papers have addressed this
issue and have proposed improvements to the equations to
suppress unnecessary code motion [4], [7], [16]. Other
papers have considered generalizing the technique by
allowing expressions to be inserted on edges in the flow-
graph [6], whereas the original Morel and Renvoise paper
only gave equations for insertions at the ends of basic
blocks. Still other papers have discussed efficient solution
techniques for the equations [3], [5], [15]. (The Morel and
Renvoise dataflow equations are somewhat unusual in that
they imply bidirectional flow of information, and thus there
does not appear to be a natural order in which the equations
can be solved efficiently.)

More recently, Knoop, Rüthing and Steffen (KRS) have
completely redeveloped the partial redundancy elimination
technique from first principles [12]. Their solutions are
optimal in the sense that expressions are always evaluated
as late as possible, but that is of course subordinate to the
primary goal of minimizing the number of evaluations of
an expression when the program executes. The KRS
approach completely eliminates all unnecessary code
motion. Furthermore, the equations are expressed as a
series of unidirectional dataflow equations and they there-
fore can be solved efficiently. Other works by the same
authors have applied similar ideas to dead code elimination
[11].

2. Classical Partial Redundancy Elimination
is Too Conservative

It takes only one example to illustrate that a standard
dataflow solution to PRE is, of necessity, conservative.
Consider the flowgraph fragment shown in Figure 2. In this
figure, the underlined numbers written alongside the con-
trol flow edges represent frequencies of execution. If the
expressiona+b  were to be inserted into block 2 (or were to
be inserted on the edges 1-2 or 2-4), then the occurrence of
a+b  in block 6 would become fully redundant and could
be deleted. From a cost-benefit viewpoint, such a code
transformation would be a clear win. For a cost of two
extra evaluations ofa+b , we would eliminate 9999 evalua-
tions for a net gain of 9997 evaluations.

However, none of the existing PRE formulations per-
forms such a code transformation. There are two reasons.

The first reason is that current PRE methods are indepen-
dent of execution frequencies. Without such information,
there is a risk that an insertion of a new computation on an
edge might increase the total number of evaluations of the
expression. The second reason is that an optimizer must be
careful not to introduce side-effects into a program that did
not exhibit them before. If we were to insert the expression
a/b  in block 3 of the flowgraph of Figure 2 and if division
by zero could cause an error interrupt on the target com-
puter, then there is a risk that we have just caused the pro-
gram to fail. (For example, block 1 might end with a test of
variableb and might transfer control to block 2 whenb is
zero and to block 3 whenb is non-zero.)

Current PRE methods insert an expressione at a pointp
only if all control flow paths emanating fromp must evalu-
atee before any operands ofe are redefined. The expres-
sion is said to beanticipable at pointp. If e is anticipable
then it does not matter if evaluatinge can cause an error
interrupt – at worst, the optimizer would have made an
error occur a little earlier than would otherwise have been
the case. The error would have been inevitable. Standard
PRE methods also guarantee that the optimized program
cannot evaluatee more times than in the original program.

If, however, we are sure that an expression cannot cause
an error interrupt or some other side-effect and if we have
execution frequency information available, we can perform
code motion transformations that would be missed by stan-
dard PRE techniques.
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Figure 2. Example of a missed
opportunity for optimization



3. A Cost-Benefit Formulation of Partial
Redundancy Elimination

We consider insertions and deletions of expressions
which are inherently safe – i.e., expressions which cannot
cause an error interrupt or have any side-effect. On many
modern computer architectures, most expressions appear to
fall into this category. Comparisons and logical operations
are almost always free of side-effects. Unless overflow
checking is specifically enabled on hardware that supports
such checking, most integer operations are inherently safe.
Floating-point operations on computer systems that follow
the IEEE standard are similarly safe unless interrupts are
specifically enabled. (Using the IEEE format, floating
point calculations with invalid operands produce results of
infinity or NaN –not-a-number.)

We also assume that we have complete information
regarding the execution frequency of every edge in the
flowgraph. This information could be obtained through a
prior run of the program on representative test data with
profiling enabled or it could be obtained via static estima-
tion techniques [17].

For our measure of cost, we will use the number of eval-
uations of an expression. Our goal will be to minimize the
number of evaluations in the program execution(s) that
supplied the frequency information. It is reasonable to
assume that any progress towards accomplishing this goal
will improve the program’s efficiency in subsequent runs.

Our analysis has two phases. The first phase determines
the lowest cost of making an expression fully redundant at
various program points throughout the flowgraph and
records how to achieve that lowest cost. The second phase
is complementary. It checks each basic block containing a
computation of the expression of interest and determines
what net benefit would be achieved, in terms of the number
of evaluations, if that expression were to be eliminated.
The results of the second phase are two sets: a set of blocks
containing expressions that should be deleted and a set of
edges where new computations of expressions should be
inserted.

3.1. Cost Analysis

To simplify the analysis, we consider occurrences of
one expressione in a flowgraph. We assume thate is a safe
expression.

We not only wish to determine the lowest cost (mea-
sured as number of evaluations) of makinge fully redun-
dant at a program pointp, but we would also like to know
how that lowest cost can be achieved. Makinge fully
redundant may require performing insertions ofe, either at
point p itself or in the paths that lead top. We will analyze
edge insertions only – insertions ofe along flowgraph

edges because this is more general than the alternative of
permitting insertions only in basic blocks. (It would, how-
ever, be easy to formulate a block-insertions version of our
analysis if that is desired.)

We use sets of flowgraph edges to represent costs. A set
{ (1,2) , (4,5) } would represent the possibility of
inserting new computations ofe on edges 1-2 and 4-5 in
the flowgraph; the numeric cost of that set measured as the
number of expression evaluations would be the sum of the
execution frequencies of edges 1-2 and 4-5.

The givens (i.e. the initial data) on which our analysis
will be based are as follows:

Freqi j = the execution frequency of edge
i-j.

TRANSPi = true iff block i is transparent toe –
i.e. block i does not contain any
assignments to operands ofe.

AVLOCi = true iff expressione is locally
available on exit from blocki – i.e.
block i contains a computation ofe
that is not subsequently killed by
an assignment to an operand ofe.

The functionCost maps a cost set to its numeric cost,
measured as the number of evaluations ofe that must be
added to the flowgraph:

Cost(S) =

The algebra for our dataflow analyses requires a cost set
that corresponds to⊥ – a set that represents a complete
lack of information about a solution. We will use the fol-
lowing set for this purpose:

⊥ = { <i,j> | <i,j>  is a
flowgraph edge }

It represents an upper bound on all cost estimates. We
informally use the notation∞ to representCost(⊥).

We wish to determine the following cost sets associated
with nodes (basic blocks) in the flowgraph:

CINj = the cost set on entry to nodej

COUTj = the cost set on exit from nodej

A solution for a setCINj can be interpreted as meaning
that the minimum cost of making expressione fully avail-
able on entry to blockj is Cost(CINj) and that lowest cost
can be realized by making insertions ofe on every edge in
the setCINj. Similarly for theCOUTj set. Note that if
block j contains a computation ofe that is available on exit
from j (i.e.AVLOCj is true) thenCOUTj will be an empty

Freqi j
i j,( ) S∈
∑



set. This is because no insertions ofe are needed to makee
fully available at this program point – and the incremental
cost of making it fully available is zero.

The CIN and COUT sets are related by a system of
dataflow equations as follows:

1.

The first part of the equation says that if blockj is trans-
parent toe and does not contain a locally available com-
putation ofe, then we can makee available on exit from
j by making it available on all incoming edges toj.
However, if block j contains a computation ofe that
reaches the end ofj, then there is no additional cost of
making j available – and that explains the second line.
Finally, the third line means, in effect, that no insertions
anywhere could makee available at this point. (This is a
consequence of only permitting insertions on edges.)

2.

where

The main part of the definition forCINj says thate can
be made fully available on entry to blockj if we pay the
price of making it available on each incoming edge toj.
The lowest cost of making it available on an edge (i,j) is
either the least cost of makinge available at exit fromi
(i.e. the solution toCOUTi) or it is the cost of inserting
e on the edge (i,j) – whichever has the lower cost. The
use of aless-or-equal comparison, as opposed to aless-
than comparison, in the definition ofCi j is quite delib-
erate. It encourages insertions to occur at the latest pos-
sible point and will therefore avoid unnecessary code
motion.

An iterative approach to solving the system of dataflow
equations is guaranteed to converge to a fixpoint. If we
start by initializing all theCIN andCOUT sets to empty,
except for the CIN set of the entry node which should be
initialized to⊥, then the total cost of the sets (as measured
by theCost function) can only grow monotonically while
the iteration proceeds. The sets themselves can both

increase and decrease in cardinality, but the computed cost
for a set can never decrease. Since there is an upper bound
for each cost set and because the number of possibilities
for an increment in cost is finite, convergence in a finite
number of steps is assured.

We give an example of cost analysis for the flowgraph
of Figure 3. The initial givens are:

TRANSPi = true fori = 2, 4, 5, 6, 7, 8 and false
for all other blocks.

AVLOCi = true for i = 2, 4, 7, 8 and false for
all other blocks.

Freqi = the underlined numbers shown
alongside the edges in Figure 3.

We proceed by initializing all theCIN andCOUT sets
to φ, except forCIN1 which is initialized to⊥. Iteratively
applying the dataflow equations rapidly converges to the
solution shown in Table 1.

As a foretaste of the benefits analysis to be given in the
next section, we can take the Table 1 solutions and use
them to immediately discover some computations ofa+b
that can be profitably moved. For example, thea+b  in
block 7 is evaluated 101,000 times. That cost exceeds the
CIN7 cost we have just determined; therefore we should
inserta+b  on every edge inCIN7, namely on edge (3,5)
and eliminate it from block 7 for a net saving of 99,000

COUT j

CIN j if TRANSP j AVLOC j•

∅ if AVLOC j

⊥ otherwise
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evaluations ofa+b. Note that the presence of the (5,9)
edge in the flowgraph prevents current PRE techniques
from performing the proposed code motion, because this
code motion would insert a computation ofa+b  on the
path 1-3-5-9 where there had been no computation before.

3.2. Simple Benefit Analysis

As we shall explain later, a full version of benefit analy-
sis is combinatorial in nature. We believe that the full algo-
rithm must have exponential running time. However, a
simple analysis can be applied immediately and it finds
some obvious places where a speed-up can be achieved.

If a block b contains an upwards exposed computation
of expression e (i.e a computation ofe that is not preceded
by assignments to any operands ofe), thene is a candidate
for elimination. The benefit to be derived from eliminating
e from b would beFreqb, whereFreqb denotes the fre-
quency of execution of blockb. The setCINb represents
the cost of makinge fully redundant at entry tob. If we
compute the quantity

NetBenefit = Freqb - Cost(CINb)
and if that quantity is greater than zero, we would speed up
the program by insertinge on all the edges in the setCINb
and deletinge from b.

Note that there may be another blockb  ́where the net
benefit would be negative butCINb´ contains some edges
in common withCINb. If we have already decided to insert
e on the edges inCINb then theadditional cost of makinge
fully redundant at entry tob  ́ may be less thanFreqb´.
Therefore, we should apply an algorithm like the one
below to find as many blocks as possible where computa-
tions ofe can be profitably eliminated.

Candidates := { b  | block b contains an
upwards exposed use of e }

Insert := φ
Redund := φ
while ∃ b (b ∈ Candidates):

Freqb - Cost(CINb - Insert) > 0 do
begin

Insert := Insert ∪ CINb
Redund := Redund ∪ {b}
Candidates := Candidates - {b}

end

We claim that our benefits algorithm will find the major
code motion opportunities in the flowgraph. However it is
deficient in two respects. Firstly, there could be a subset of
the candidate blocks which yields a net benefit if processed
together, but where no individual block yields a net benefit
if processed separately. Secondly, if two candidate blocks
b1 andb2 contain computations ofe that should be elimi-
nated, there may be more profitable places to insert new
occurrences ofe than on the edges in the combined set
CINb1 ∪ CINb2.

The first of these two deficiencies can be solved by
transforming the dependencies between candidate blocks
and insertion edges into a network flow problem. (This
transformation appears as problem 27-3 in [2].) Then the
problem of finding the optimalRedund set can be solved
using a min-cut algorithm.The best min-cut algorithms run

in time O(m n log(n2/m)) wherem is the number of edges
andn is the number of vertices in the network [2] [8] [10].
Relating this back to our PRE problem,n would be
bounded by the sum of the number of edges in the flow-
graph and the number of candidate blocks in the flowgraph,
while m is bounded by their product. However, we believe
that the second deficiency renders any approach that solves
just the first deficiency almost useless.

4. More Examples

4.1. A Larger Example

First, we demonstrate the code motions generated for
the larger example flowgraph shown in Figure 4.

The results of the cost set analysis for this flowgraph
appear in Table 2. Using the cost sets shown in that table,
our benefit analysis algorithm would determine:

Insert = { (1,2), (3,6) }
Redund = { 7, 8, 11, 14 }
Making these insertions and deletions would, if the pro-

gram were to be rerun with the same input data, reduce the
total number of evaluations ofa+b  from 5400 to 1407.

Table 1.  Cost analysis results for Figure 3

block i CINi
Cost
(CINi)

COUTi
Cost

(COUTi)

1 ⊥ ∞ ⊥ ∞
2 { (1,2) } 2000 φ 0

3 { (1,3) } 3000 ⊥ ∞
4 { (3,4) } 1000 φ 0

5 { (3,5) } 2000 { (3,5) } 2000

6 φ 0 φ 0

7 { (3,5) } 2000 φ 0

8 φ 0 φ 0

9 { (5,9) } 1000 ⊥ ∞



4.2. An Example Requiring Two Passes

Next, we illustrate why further development of out cost-
benefit analysis technique might be needed. Figure 5 shows
a relatively small flowgraph where the code motion that the
algorithm prescribes is not what a simple visual inspection
would have produced.

Our analysis algorithm produces the following table of
costs.

The insertions and deletions generated by the analysis
are as follows:

Insert = { (1,2), (4,6) }
Redund = { 3 }
The obvious improvement to the program is to insert a

computation on edge (1,2) only. However, if we perform
the prescribed code motion, we obtain the flowgraph
shown in Figure 6. Note that we have shown the insertion
on edge (1,2) as an insertion at the bottom of block 1 and
the insertion on edge (4,6) as an insertion at the bottom of

Table 2.  Cost analysis for flowgraph of Figure 4

block i CIN i Cost

1 ⊥ ∞
2, 3, 4 { (6,9), (1,2) } 102

5 { (3,5) } 1000

6 { (3,6) } 101

7, 8 { (6,9), (1,2) } 102

9 { (6,9) } 101

10 { (6,9), (1,2) } 102

11 { (6,9) } 101

12, 13, 14 { (6,9), (1,2) } 102

15 { (6,9) } 101

16 { (15,16) } 1
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block 4. Re-application of our cost-benefit analysis algo-
rithm will eliminate the fully redundant computations in
blocks 4 and 5, yielding the optimal solution.

5. Discussion and Future Directions

We are not the first to have proposed treating safe
expressions differently for code motion optimizations. An
interval-based approach using that idea was published as
long ago as 1972 by Ken Kennedy [9]. Nor are we the first
to have proposed using program profile information to
assist the code optimizer. Probably the most significant of
the previous work in this area concerns the use of profile
information to determine which function calls can be prof-
itably inlined [14]. The closest previously published work
to our own is an examination by Chang et al. of how pro-
files can be used in ‘classical’ code optimizations [1].
Indeed, Chang et al. gave one example where a partial
redundancy elimination was performed. However, they did
not formalize the technique or give a systematic algorithm
for finding the opportunities for code motion.

We believe that our approach is the first formalization of
code motion optimization as a cost-benefit analysis based
on hard numbers. It is a promising technique that warrants
further investigation. It finds opportunities for code motion
that are inappropriate for ‘classical’ PRE methods, produc-
ing significant improvements to flowgraphs that contain
heavily executed loops. Our approach favours late inser-
tions of code over early insertions, avoiding unnecessary
code motion – a problem that flawed the original Morel
and Renvoise approach.

Some interesting work lies ahead. In addition to build-
ing a test implementation in a compiler and gathering
experimental statistics, we also plan to pursue the follow-
ing directions:

• Finding a more efficient implementation of the cost
analysis algorithm.

• Analyzing the time complexity of the approach.

• Finding a better heuristic algorithm for selecting which
computations should be eliminated after cost analysis
has been performed.

• Handling expressions which are safe in some regions of
the program and unsafe in other regions. (For example,
an array reference expressiona[i]  is safe in those
parts of the program where range analysis can deter-
mine that the indexi  must be within the array bounds.)

• Extending the technique to unsafe expressions.

• Constructing an interprocedural version of the algo-
rithm.

• Applying a similar approach to partial dead code elimi-
nation [11].
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