
Improving LZW

R. Nigel Horspool
Dept. of Computer Science, University of Victoria
P.O. Box 3055, Victoria, B.C., Canada V8W 3P6

e-mail address: nigelh@csr.uvic.ca

The Lempel-Ziv-Welch (LZW) compression algorithm is widely used
because it achieves an excellent compromise between compression
performance and speed of execution. A simple way to improve the
compression without significantly degrading its speed is proposed, and
experimental data shows that it works in practice. Even better results are
achieved with an additional optimization of “phasing in” binary
numbers.

1 Introduction
The most effective compression algorithms are, unfortunately, computationally expensive.
Unless a special-purpose hardware implementation is available or unless the application
has no immediate deadline to meet (as in overnight archiving of files), most users would
prefer to trade some compression performance for faster rates of compression and de-
compression.

At present, the de facto method of choice is the Lempel-Ziv-Welch algorithm
(LZW) [2]. LZW was originally designed for implementation by special hardware, but it
turned out to be highly suitable for efficient software implementations too. An enhanced
variant is available on UNIX systems and many other systems as the compress command.
We refer to this variant as LZC. The speed and compression performance of LZC are a
result of careful data structure design for hash table look-ups, some tuning and the addi-
tion of logic for restarting the algorithm when the source file changes its characteristics
enough to worsen compression performance.

Is it possible to improve the compression performance of LZC even further with-
out significantly affecting its execution speed? To answer this question, we examine some
possibilities and select two as having the most promise. The two enhancements together
entail only minor changes to the LZC implementation and increase its computational
requirements only a little. Experimental results indicate that compression performance is
improved, depending on the nature of the source file, by up to 8%. That is, a file that is
compressed to 49% of its original size by the standard LZW algorithm is compressed to
about 41% of its size by the improved algorithm.

2 Descriptions of LZW and LZC
Ziv and Lempel are the originators of a large and growing family of related compression
algorithms [4][5]. Algorithms in this family achieve their compression by replacing a
repeated sequence of characters with a reference back to its previous occurrence. The
algorithms differ according to how such references are represented and on how to select
the sequences that are replaced. Twelve different variations on Ziv-Lempel compression
are described in [1]. We now briefly review the LZW algorithm.

LZW is an adaptive technique. As the compression algorithm runs, a changing dic-
tionary of (some of) the strings that have appeared in the text so far is maintained. Because
the dictionary is pre-loaded with the 256 different codes that may appear in a byte, it is
guaranteed that the entire input source may be converted into a series of dictionary
indexes. If α and β are two strings that are held in the dictionary, the character sequence
αβ is converted into the index of α followed by the index of β. A greedy string matching
algorithm is used for scanning the input, so if the first character of β is x, then αx cannot
be an element of the dictionary. The adaptive nature of the algorithm is due to that fact that
αx is automatically added to the dictionary if α is matched but αx is not matched. The
algorithm may be expressed as follows. We use the notation <<s,x>> to represent the
string formed by appending character x to the string with number s in the dictionary.

for(i in the range 0 to 255)
add i as a one-character string to the dictionary;

add the empty string λ to the dictionary;
sn = string number of λ;
while(input remains) {

read(ch);
if (<<sn,ch>> is in the dictionary)

sn = string number of <<sn,ch>>;
else {

write_number(sn);
if (dictionary is not full)

add <<sn,ch>> to next position in dictionary;
sn = string number of <<ch>>;

}
}
write_number(sn);

The algorithm maintains the prefix property – namely, if αx is a string in the dic-
tionary, then α must be held in the dictionary also. This enables an entry for an n character
string in the dictionary (n>1) to be encoded as a pair <<s,x>> where s is the number of
the n–1 character prefix and x is the final character. The LZC implementation uses hashing
to store and to look up the <<s,x>> pairs efficiently.

String numbers are output in binary. However, as an optimization, the number of
bits used varies according to the dictionary occupancy. If N represents the number of
strings currently held in the dictionary, then while N is in the range 256 to 511, each string
number is output as a 9-bit binary number. While N is in the range 512 to 1023, string
numbers are output as 10-bit numbers, and so on.

The decoding algorithm (executed by the uncompress command on UNIX systems) must
maintain the same dictionary – adding new strings to the dictionary in a manner that mim-
ics the behaviour of the compression algorithm. We omit a full description of the decoding
process, referring the reader instead to [2] or to [1]. Decoding should, of course, execute
faster than compression because hash table searching for strings in the dictionary is unnec-
essary.

When the dictionary has filled up, LZW becomes non-adaptive – it compresses
using an unchanging dictionary. For heterogenous files composed of sections with widely
differing characteristics (executable files have this nature), the lack of further adaptability
may lead to poor overall compression performance. A modification, used in LZC, is to
monitor the compression ratio after the dictionary has filled. If the ratio starts to worsen,
the dictionary is simply cleared. In effect, the compression algorithm is restarted. A spe-
cial code (an unused string number) is output so that the decoding algorithm will re-initial-
ize its dictionary at the same point. This enhancement is highly effective on heterogenous
files (composed of sections with different characteristics) such as executable files.

3 Possibilities for Improving LZC

Unless we are prepared to completely change the nature of the LZW/LZC algo-
rithm, there appears to be two areas where one might seek better compression perfor-
mance. One area is concerned with the binary encoding of string numbers (a scheme that
uses the same number of bits to represent every string number is surely sub-optimal), and
the other area is concerned with the contents of the dictionary. We will look at these two
areas in turn.

Redundancy in Encoding String Indexes
Until the dictionary has been filled, a redundant coding for the string numbers is used. If
the dictionary currently contains N strings, then bits are used to encode a string
number. A fractional number of bits is therefore wasted unless N happens to be a power of
2.Since N increases by one for each string number that is output by the compression num-
ber, we can express the total wastage of bits as

where max is the size that the dictionary grows to. There is an upper bound on max, nor-
mally selected to be a power of two for LZW implementations. If max is chosen to be
65536 (the default limit for the compress program), and if the source file exactly causes

2log N()

log2 N() log2 N()–
N 257=

max

∑

the dictionary to be filled, the redundancy amounts to 9.9% of the code bytes generated. If
further compression proceeds with the dictionary operating at its maximum capacity, this
percentage will be reduced somewhat.

 What less redundant coding schemes could be used for the string numbers? One
possibility is arithmetic coding. If each string number is assigned a probability of 1/N, we
would eliminate all the wastage. Unfortunately, a software implementation of the arith-
metic coding algorithm, as given in [3], would substantially reduce the execution speed of
the LZW algorithm. A simpler, and much faster, technique is to phase in binary codes pro-
gressively (a scheme described in Appendix A-2 of [1]). An example of a phased-in cod-
ing scheme is illustrated in Table 1 for the case when string numbers range over 0 to 9.

Implementation of a phased-in coding scheme is straightforward. For example, the
codes shown in Table 1 may be read and converted to integers using the following logic.

i = read a 3-bit number;
if (i >= 6) { b = read a 1-bit number; i = 2*i + b; }

Conversely, they may be output using the following logic.
/* output the code for integer c */
if (c >= 6)

write c+6 as a 4-bit number;
else

write c as a 3-bit number;

Analysis of the expected number of bits saved with this coding scheme (under the assump-
tion that the string numbers are equally probable) is straightforward and therefore we omit
it. Experimental data given in Table 2 show that its use realizes almost all the potential of
arithmetic coding. The second row of the table shows the compression that would be
achieved with use of arithmetic coding for string numbers; the third row shows the com-
pression using the phased-in string numbering scheme.

There is a second source of redundancy in the coding scheme. Consider the follow-
ing small example. Suppose that the compression algorithm is processing the input
“abcd...” and that it has “abc” and “abca” in its dictionary but does not have “abcd”. In this
situation, the number of the string “abc” will be output, and the compression algorithm
will begin matching a new string that begins with the letter ‘d’. We observe that the decod-
ing algorithm knows the second string does not begin with the letter ‘a’ (otherwise the
string “abca” would have been matched). Therefore, the technique used to number strings

Table 1 The Phased-in Binary Coding Scheme (N=10)

Decimal Binary Code

0 000
1 001
2 010
5 101

Decimal Binary Code

6 1100
7 1101
8 1110
9 1111

need not allocate any numbers to strings that begin with the letter ‘a’. Allowing for such a
possibility is a form of redundancy.

In general, if σ is the string that has just been output, we can determine the set of
immediate suffixes as and, for encoding the next string, eliminate all
strings whose first character is a member of this set from the numbering scheme.

Experiments show that the amount of redundancy introduced by this effect is not
very large. Some experimental data is shown in Table 2. The second row of the table
shows the compression that would be achieved if arithmetic coding is used for string num-
ber encoding (where all string numbers are assumed to be equally probable). The fourth
row shows the compression that would be achieved if the impossible strings are elimi-
nated from the numbering system. In other words, the third row corresponds to using
arithmetic coding with zero probabilities for the impossible strings and equal probabilities
for all other strings. Since the dictionary changes dynamically during much of a typical
execution of the LZW algorithm, any coding scheme that takes advantage of this optimi-
zation optimization would involve considerable execution overhead. In light of the small
potential gain in compression performance, we consider that this direction is not worth
pursuing further.

There is another way to view the redundancy in the string number coding scheme.
The matching of input against strings in the dictionary uses a greedy algorithm. That is,
the matching process used in the LZW algorithm goes for the longest match possible.
However, alternative (non-greedy) matchings are ignored. For example, if the dictionary
contains the four strings “ab”, “abc”, “cd” and “d” (but not the string “abcd”), the
sequence of characters “abcd” will be matched as “abc” and then “d”. However, a non-
greedy matching of “ab” and “cd” is also available and would be equally acceptable to the
decoding algorithm.

Estimating Probabilities for String Numbers
The binary number coding of string numbers standard implementation of LZW has an
inherent assumption that all string numbers are equally likely. But that is definitely not the
case. As was explained above, there is correlation between consecutive string numbers
that limit the possibilities (i.e. some strings have a probability of zero). There are interme-
diate cases too. If the dictionary contains an entry for string σ, then, as the compression
algorithm proceeds, it will add more strings of the form σx. Each addition of one of these

x | σx∈table{ }

Table 2 Compression with Different String Number Encoding Schemes

C source file English Text File

Standard LZW with binary coding 49.3% 36.7%
LZW with arithmetic coding 47.5% 35.4%
LZW with “phased-in” binary coding 47.8% 35.5%
LZW with optimized arithmetic coding 46.9% 34.6%

strings reduces the probability that the string σ needs to be encoded. (If σx is added for
every x in the source alphabet, the only remaining circumstance when σ might need to be
encoded occurs at the end of the file.)

A potential research direction is to devise a scheme where the LZW implementa-
tion makes estimates of probabilities for the string numbers and uses these estimates in
arithmetic coding of the string numbers. It is hard to imagine, however, how any such
scheme could be implemented efficiently enough to be practical. For that reason, we have
not pursued this possibility further.

Possibilities for Adaptive Loading of the Dictionary

The LZW algorithm uses a particularly simple scheme for loading new strings into
the dictionary. We can characterize the scheme as follows. If the sequence of strings that
are matched is σ1, σ2, σ3, ... then LZW adds new strings of the form

σ1P1(σ2), σ2P1(σ3), σ3P1(σ4), ...

where Pk(σi) represents the k-character prefix of string σi. But it is easy to imagine
schemes where strings of the form σ1σ2, σ2σ3, ... get loaded, or strings of the form
S1(σ1)σ2, S1(σ2)σ3, ... where Sk(σi) represents the k-character suffix of string σi, or
strings of the form S1(σ1)σ2P1(σ3), and so on. The possibilities seem endless. Some possi-
bilities along these lines have been used in Ziv-Lempel variants.

A property that can be used as a criterion for limiting the choice is the prefix prop-
erty. We can require that if σ is a string in the dictionary then every prefix of σ must also
present. Without this property, more sophisticated algorithms for matching the input
against the dictionary contents are required and it seems inevitable that there would be a
speed penalty. We should also be careful not to load strings into the dictionary at too fast a
rate – otherwise the compression and decompression algorithms may spend too much time
updating the dictionary (and they will also have to handle dictionary overflow much ear-
lier).

We have a simple proposal for adding potentially useful strings to the dictionary. If
the sequence of strings matched by the compression algorithm is σ1, σ2, σ3, ..., as before,
then the standard LZW/LZC algorithm will add strings of the form σiP1(σi+1). We propose
adding several strings of the form

σiPk(σi+1) for k = 1, 2, ... min(maxlen, |σi+1|)

where maxlen imposes a maximum limit on k .

For example, if the input source is the string “abcdefg...” and if LZC matches it as
the two strings “abc” and “defg”, LZC will add just “abcd” to its dictionary. We propose
also adding “abcde” when maxlen Š 2, and adding “abcdef” when maxlen Š 3, and so on.

The rationale is that if the substring “abcdefg” occurs a second time in the input,
LZC will now add “abcde” to the dictionary. If “abcdefg” occurs for a third time, LZC will
next add “abcdef”, and so on. Since the underlying principle of LZW/LZC is to improve
the encoding of repeated substrings, our suggestion falls entirely within the spirit of that
principle. Furthermore, the prefix property is maintained and so the required modifica-
tions to the LZC implementation are minor. The revised algorithm is detailed in the next
section. We note that setting a maximum length on the extension (i.e. maxlen above) pro-
vides a mechanism for varying the rate of loading of new strings into the dictionary. As
experimental data will show, increasing the maximum allowed value for k improves com-
pression performance but causes the dictionary to fill at a much faster rate.

4 The Accelerated Dictionary Loading Algorithm
The revised compression algorithm that incorporates accelerated loading of strings into
the dictionary has the following structure. The variable xsn holds the string number of the
prefix used in the next extra string to be added to the dictionary. The variable xscnt
implements control over the number of extra strings generated. The limit on the number of
such strings is controlled by the variable maxlen.

for(i in the range 0 to 255)
add i as a one-character string to the dictionary;

add the empty string λ to the dictionary;
sn = string number of λ; xscnt = 0;
while(input remains) {

read(ch);
if (<<sn,ch>> is in the dictionary) {

if (xscnt > 1) {
add <<xsn,ch>> to next position in dictionary;
xsn = string number of <<xsn,ch>>;
xscnt = xscnt - 1;

}
sn = string number of <<sn,ch>>;

} else {
write_number(sn);
if (dictionary is not full) {

add <<sn,ch>> to next position in dictionary;
xsn = string number of <<sn,ch>>;
xscnt = maxlen;

}
sn = string number of <<ch>>;

}
}
write_number(sn);

It may be observed that if maxlen is set to a very large value, exactly one new string is
stored in the dictionary for every character read from the input. Note also that the “phased-
in” binary coding scheme may, of course, be used for outputting the string numbers.

The decoding algorithm has to add exactly the same set of strings to its dictionary.
It seems simplest to create the new strings for dictionary insertion as characters are gener-
ated for output. For space reasons, we omit giving details of the algorithm.

5 Experimental Measurements
Some experimental results to show the effect of accelerated dictionary loading on com-
pression performance are given in Table 3. The LZC implementation with accelerated dic-
tionary loading is labelled LZCA in the table; the implementation that uses both
accelerated dictionary loading and the “phased-in” numbering scheme is labelled LZCA-
P. The parameter that controls the maximum length of the suffix, maxlen, is shown across
the top of the table. The ‘max=1’ column corresponds to the standard LZC implementa-
tion.

The results show that compression performance tends to improve as strings are
added to the dictionary at a faster rate. The amount of improvement depends greatly on the
nature of the source file. For files with very little short-range correlations between charac-
ters, such as executable files, the improvement is non-existent or negligible. But for ASCII
text files containing source code, English text, and the similar, the improvements are sig-
nificant. As another means of displaying the compression improvement when accelerated
dictionary loading is used, Figure 1 shows the overall compression achieved as the source
file (an English text file) is processed. The three different curves correspond to loading
rates of 1 (i.e. normal LZC), 2 and 5. The curves show that compression with accelerated
loading has a consistent advantage over standard LZC. The advantage is only lost when
the dictionary is eventually filled.

Table 3 LZW with Accelerated Dictionary Loading

C Source Code File (size 25200 bytes):
Algorithm max=1 max=2 max=3 max=4 max=5 max=∞
LZWA 49.3% 46.0% 44.7% 44.1% 43.7% 42.8%
LZWA-P 47.8% 44.4% 43.0% 42.3% 42.0% 41.2%

English Text File (size 76816 bytes):
Algorithm max=1 max=2 max=3 max=4 max=5 max=∞
LZWA 36.7% 34.8% 34.1% 33.8% 33.5% 34.5%
LZWA-P 35.5% 33.5% 32.7% 32.5% 32.2% 32.5%

Sun-3 Executable File (size 24576 bytes):
Algorithm max=1 max=2 max=3 max=4 max=5 max=∞
LZWA 18.4% 18.3% 18.3% 18.4% 18.4% 18.4%
LZWA-P 17.6% 17.5% 17.5% 17.5% 17.5% 17.6%

Accelerated loading of the string table does cause an increase in CPU requirements
on short files. The additional hash table insertions consume execution time, and the
amount of extra execution time required for each insertion grows as the hash table fills.
For large homogenous files, however, the difference in CPU time requirements should be
minimal. The standard LZC implementation would simply fill the dictionary and continue
to operate with a static dictionary for the remainder of the input. It makes little difference
if that dictionary is loaded at a faster rate and becomes static sooner. Some CPU timings
on files that does not cause the dictionary to completely fill up are reported in Table 4
below. Timings are measured in CPU seconds (the total of the user time and system time)
on a SUN-4 SPARCserver 370 machine.

6 Summary and Conclusions
The better the compression that is achieved by a coding technique, the harder it becomes
to extract each percent of additional compression. It has not been easy to find easily imple-
mentable methods for improving the performance of LZC, especially when we impose an
additional constraint that the execution time requirements should not be severely affected.
We have selected two ways of improving LZC (the Unix compress command). One, a

Figure 1 Cumulative Compression Rates with Accelerated Loading

method of loading the dictionary at a faster rate, has not been used before. The other, a
method to phase in increased lengths of binary numbers gradually, is not original but is not
currently used with LZC. Together, these two compression methods achieve substantial
improvements, especially on shorter files where the dictionary does not normally have a
chance to fill to an extent that achieves good compression performance.

References

[1] Bell, T.G., Cleary, J.G., and Witten, I.H. Text Compression. Prentice-Hall, Englewood
Cliffs, NJ (1990).

[2] Welch, T.A. “A Technique for High-Performance Data Compression.” IEEE Com-
puter 17,6 (June 1984), pp. 8-19.

[3] Witten, I.H., Neal, R., and Cleary, J.G. “Arithmetic Coding for Data Compression.”
Comm. of ACM 30,6 (June 1987), pp. 520-540.

[4] Ziv, J, and Lempel, A. “A Universal Algorithm for Sequential Data Compression.”
IEEE Trans. on Inf. Theory IT-23,3 (May 1977), pp. 337-343.

[5] Ziv, J, and Lempel, A. “Compression of Individual Sequences via Variable-Rate
Coding.” IEEE Trans. on Inf. Theory IT-24,5 (Sept. 1978), pp. 530-536.

Table 4 CPU Time Measurements

C Source Code File:
max=1 max=2 max=3 max=4 max=5 max=∞

0.23 0.24 0.25 0.26 0.26 0.29

English Text File:
max=1 max=2 max=3 max=4 max=5 max=∞

0.46 0.52 0.57 0.61 0.65 0.83

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

