
RECURSIVE ASCENT-DESCENT PARSING

R. Nigel Horspool

Department of Computer Science, University of Victoria,

P.O. Box 1700, Victoria, B.C.

Canada V8W 2Y2

11 June 1991

Abstract

Generalized left-corner parsing was originally presented as a technique for generating a

parser for the SLR(1) class of grammars but with far fewer states than the SLR(1) parser.

This paper modi�es and extends the formulation of left-corner parsers so that it is possible to

apply the technique to the LALR(1) and LR(1) classes of grammars. It is further shown that

left-corner parsers can be converted into directly executed code in a manner that subsumes the

parsing methods known as recursive descent and recursive ascent { hence the name recursive

ascent-descent. The directly executed form has the advantage that it allows a compiler writer

to insert semantic code into the parser incrementally, without having to re-execute the parser

generator.

Index Terms compilers, parsers, left-corner parsing, recursive descent, recursive ascent.

1 Introduction

A parsing technique called generalized left-corner parsing, GLC, was introduced by Demers[7].

The technique may be viewed as a hybrid between the top-down and bottom-up approaches to

parsing. Very informally, a bottom-up parsing approach is used to recognize the input until it

becomes unambiguous as to which grammatical production rule is being matched. A top-down

approach is then used to match the remainder of the production rule's right-hand side.

As presented by Demers, the test used to resolve conicts between alternative parsing choices

is the same as that employed by the SLR(1) parsing method[8]. Consequently, the construction

algorithm that was given for creating a left-corner parser was closely related to the SLR(1) parser

construction algorithm, and the class of acceptable grammars is the SLR(1) class. The parsing

method was dubbed SGLC(1) to indicate that it was a SLR(1)-based version of generalized left-

corner parsing. Although it was stated that the technique is easily generalized to the LR(k)

grammar classes, no details were provided. The main advantage given for SGLC(1) parsing was

that the parser would have fewer recognizer states than the corresponding SLR(1) parser, and

implementations should thus require less memory.

1

Nowadays, the SLR(1) parsing method has been almost totally supplanted by the LALR(1) and

LR(1) parsing methods because they accept larger classes of grammars. The LALR(1) method is

clearly superior because it accepts a larger grammar class without increasing the number of states

over the SLR(1) method. In this paper, we will show how the left-corner parsing approach can

be extended to accommodate the LALR(1) and LR(1) grammar classes. This extension requires

a modi�cation to the original formulation of left-corner parsing to be made. Using the pre�x `X'

(instead of `G') to denote extended, we call the LALR(1)-based version of the method LAXLC(1)

and the LR(1)-based version XLC(1).

The bene�ts of this work are two-fold. First, we retain the original advantage of left-corner

parsing in that the parser will almost always have many fewer states than the equivalent LALR(1)

or LR(1) parser. Secondly, we will show that the left-corner parser can be converted into directly

executable code in a manner that subsumes the recursive-descent [1] and recursive-ascent [14, 15, 3]

methods. Any user who demands the ability to insert semantic code directly into the generated

parser will �nd the directly executable form of a left-corner parser advantageous.

In the remainder of this paper, we review left-corner parsing and then we describe the extended

left-corner parsing method. Subsequently, we review the recursive-descent and recursive-ascent

methods and then show how our left-corner parser can be converted into a directly executable

version that we call a recursive-ascent-descent parser. Finally, we conclude with a report on

some experience with an implementation of a generator for LAXLC(1) parsers (LALR(1)-based

extended generalized left-corner parsers).

We assume that the reader has moderate familiarity with the LALR(1) and LR(1) parsing

methods. Introductions to this material may be found in many texts, including [1], [6] and [9].

2 Notational Conventions

Throughout the paper, some standard notational conventions are used. A (context-free) grammar

G is a four-tuple < VN ; VT ; P; S > where VN is a �nite set of non-terminal symbols, VT is a �nite

set of terminal symbols (VT \ VN = �), S 2 VN is the start symbol, and P is a list of production

rules of the form A!� where A 2 VN and � 2 fVN [VT g
�.

We use additional conventions that

A,B,C ... denote non-terminal symbols,

a,b,c ... denote terminal symbols,

X,Y,Z ... denote symbols in VN [VT ,

v,w,x ... denote strings in VT
�,

�, �, , ... denote strings in (VN [VT)
�,

� denotes the empty string,

a denotes an end-of-input marker

We write �A) �� if A!� 2 P. The relation)� is the reexive transitive closure of).

The notation L(G) represents the language generated by G and is de�ned as follows.

L(G) = f � j S)� � ^ � 2 VT
� g

2

The function �rstk is de�ned as follows.

�rstk(�) = f v j 9x : �)� vx ^ jvj = k g

For convenience, we also use a two-argument variation of �rstk, where the second argument is a

set of su�xes to be appended to the �rst argument. It is de�ned as follows.

�rstk(�; �) =
[
w2�

�rstk(�w)

We assume throughout that G is a reduced grammar. That is, for every production rule p

there must exist a sentence in L(G) whose derivation uses p.

LR(0) items are production rules in which a position in the right-hand side is indicated by a

dot marker. We use the notation [A!� � �], where A!�� 2 P, for an item.

3 Overview of SGLC(1) Left-Corner Parsing

As formulated by Demers, the construction algorithm for the left-corner parser must initially

determine a recognition point for each production rule in the grammar. This is the point in the

rule's right-hand side which has been reached before the parser has unambiguously determined

that it is this particular rule that is being matched. Furthermore, (and this will be a point of

di�erence between our approach and Demers' approach) it is necessary that it remain unambiguous

as to which rule is being used while remaining symbols on the right-hand side are matched. Every

rule must have a recognition point, even if this point occurs at the very end of the rule's right-hand

side.1 The positions of recognition points are necessarily a property of the parsing method. For

example, we can easily construct grammars for which the SLR(2) parsing method would know

one symbol sooner than the SLR(1) method which rule is being recognized.

Determination of recognition points is not a trivial matter. Demers only gave a practical algo-

rithm that works when the parsing method is SLR(1) and when the grammar has no left-recursive

rules. For SLR(1) grammars that do have left-recursive rules, it is implicitly suggested that a

trial-and-error approach should be used to �nd the recognition points. (We will later introduce a

generalization to the notion of recognition point and it makes the problem of determining recogni-

tion points equivalent to another problem for which a general algorithm has been published.) We

will omit a description of the Demers algorithm and simply give an example grammar in which

the recognition point of rule i is marked by the symbol b{.
1. A ! a B b b1 C

2. B ! B b b2
3. B ! b3 b (Grammar G1)

4. C ! C b4 c

5. C ! b5 c

1
If we could reach the end of a right-hand side without unambiguously knowing which rule is involved, we would

not be able to reduce by that rule at that moment, and hence we could not construct a canonical parser.

3

T Table N Table

State a b c a A B C

Q0 = QA s2 s8

Q1 = QC
b5 s5

Q2
b3 s3

Q3 s4

Q4
b2 b1

Q5
b4 P2

Q6 = Qb s8

Q7 = Qc s8

Q8 P2 P2 P2

Rule Pops LHS RHS Su�x

1 3 A QC

2 2 B

3 0 B Qb

4 1 C Qc

5 0 C Qc

Figure 1: Left-Corner Parse Tables for Grammar G1

The grammar has been contrived to illustrate a point that is made later when we describe our

improvements to the parsing method.

As with other LR parsers, the SGLC parser for this grammar uses a stack that can hold state

numbers. For this parser, �ve of the states are associated with grammar symbols. A state with

a name like Qa indicates that the state is associated with symbol a, etc. The symbol a has been

used to represent the end-of-input.

The parse tables for this grammar are shown in Figure 1. The table entries have the following

meanings and cause the following actions to occur. An entry of the form sk means `shift to state

k'; it causes state number k to be pushed onto the stack and a new terminal symbol to be read.

An entry of the form b{ means `announce rule i' and the associated action has three parts to it.

Let rule i have the form A ! �b{ �. Then the �rst part of the action is to pop j�j items o� the

stack, exposing top as the state on top of the stack. The second part is to push the state in the

N Table[top;A] entry onto the stack. The third part is to push the states that correspond to the

individual symbols of � onto the stack in reverse order. (The table indexed by the rule number

in Figure 1 could be used to implement the announce action; it gives the number of entries to

pop, the left-hand side symbol of the rule, and the sequence of states to be pushed.) An entry

of the form Pk means `pop k entries o� the stack'; for a SGLC parser, k is always equal to 2.

(We introduce the parameter to the pop action now so that the SGLC(1) table entries have the

same form as for the LAXLC(1) and XLC(1) parsers.) As usual, a blank entry in the T TABLE

indicates a syntax error. (Blank entries in the N TABLE represent \don't care" entries.)

The parse begins by pushing the state associated with the start symbol of the grammar (QA

in this case), onto the stack and reading the �rst terminal symbol from the input. The parser

repeatedly applies the action T Table[top; x] where top is the top state on the stack and x is the

current input symbol. The parser halts if the stack becomes empty and it would then report

success only if the input has been exhausted (i.e. if the current symbol is the end-of-�le marker

a).

4

4 Extended Generalized Left-Corner Parsing

4.1 Free Positions and Rule Recognition Points

The notion of a rule recognition point can be generalized and put on a more formal basis as

follows. Given a grammar G that includes a production p

A ! � �

(where � and � cannot both be empty) then a particular canonical parsing method M can be said

to capable of determining that this rule is being matched after having read the symbols of � if

the following two conditions hold. First, M must be capable of recognizing exactly the language

L that is generated by G. Second, M must be able to recognize the same language L using the

modi�ed grammar, G0, which is identical to G except that the production p is replaced by the

two rules

A ! � Z �

Z ! �

where Z is a new (and therefore unique) non-terminal symbol.

The above de�nition provides an ine�cient but constructive algorithm for testing each position

in the right-hand side of every production to check if it is a recognition point. There are two

remarks to make.

First, our generalization of recognition point is identical to the notion of a free position used by

Purdom and Brown[13]. We will therefore use the name `free position' throughout the remainder

of this paper. The importance of a free position is that it represents a point in the parse where

semantic action code can be freely inserted. A common technique for attaching semantic code

is to insert a new non-terminal symbol at the point in the grammar where the action is to be

performed; to de�ne the new non-terminal by a null production; and to execute the desired

semantic action code whenever the parser reduces by that null production. Our de�nition for free

position corresponds to that technique.

Second, it is implicitly required by Demers' formulation of left-corner parsing that every

position in a rule that follows a recognition point must also be a possible recognition point.

The leftmost recognition point in each rule should be used in order to minimize the number of

parser states. If we generalize from recognition point to free position, we do not necessarily �nd

that all positions following a free position are free.

The �rst rule in the example grammar given previously illustrates the situation. The entire

grammar is reproduced below using the symbol � to indicate a free position. For this grammar, it

does not matter whether the parsing method is SLR(1), LALR(1) or LR(1), the same set of free

positions will result.

1. A ! � a � B b � C �

2. B ! B b �

3. B ! � b �

4. C ! C � c �

5

5. C ! � c �

(The reader is invited to test that the free positions are marked correctly by supplying the grammar

to a parser generator and inserting semantic actions at various points.) In contrast to the left-

corner parsing method of Demers, we can always use the leftmost free position in a rule as the

recognition point.

4.2 The Construction Algorithm for LAXLC(1) Parsers

We now give the parser construction algorithm for the LALR(1)-based version of our extended

left-corner parsing method. As explained later, the construction algorithm requires only minor

changes to become SLR(1)-based or LR(1)-based.

Given a grammar G, a preliminary step in constructing the extended left-corner parser is to

determine the free positions in the production rules of G. This requires construction of the LR(0)

sets of items for G with conicts resolved by standard LALR(1) analysis of context sets. If any of

the conicts cannot be resolved, we reject G and do not proceed any further. The Purdom and

Brown algorithm[13] may now be applied to the item sets to discover which positions are free.

In each rule, one free position must be selected as the recognition point of that rule. Normally,

we would choose the leftmost free position in each rule as this would usually create a parser with

the fewest states. However, the construction method works correctly if any free position is chosen.

Following Demers, we use the marker b{ to indicate the recognition point of rule i. Thus, a LR(0)

item written as [A!� � X�] implies that the dot marker is not at the recognition point. When

the dot is at the recognition point, we write the item as [A!� � b{X�].

Once the recognition points have been selected, the grammar is inspected to create a number

of basis items. For every production rule A!�b{�, we decompose � into zero or more non-empty

substrings that do not contain any free positions. Let � = �1��2�:::�k, where the � symbol is

used to mark each free position. Then for each �j , we create a basis item set

f [S�j ! ` � �j] g

for an entry state named Q�j . We use ` as a start of input symbol, and we use the new symbols of

the form S� to represent subgoals, where `62 VT and S� 62 VN . The ` symbol is used in items to

enforce the property that the dot marker never appears immediately after the production arrow

in a basis item. In addition, the basis item set

f [SS! ` � S] g

for a state named QS is created, where S is the goal symbol of the grammar. Each distinct basis

item set is used to derive a separate entry state for the recognizer. QS is the start state for the

recognizer; the other entry states are used for subgoal recognition when the parser is operating

in a top-down mode.

For the purposes of de�ning the closure and goto functions below, we assume that a rule with

a subgoal symbol S� on the left-hand side contains no free positions and contains no recognition

point marker.

6

A closure function cl is applied to a set of items to create the complete set of items that

comprises a recognizer state. If I is a set of items, then cl(I) is the smallest set of items such

that I � cl(I) and if [A!� � B�] 2 I, then [B! �] 2 I for each rule B! in G. This

is the same closure process as for construction of a LR(0) recognizer with the exception that if

the dot should be at the recognition point of the rule used in an item, no closure items would be

generated from that item.

Additional states, reached on terminal or non-terminal transitions out of an entry state, are

constructed by the goto function. If I is a set of items and X is a grammar symbol, goto(I;X)

is de�ned as the closure of the set of items [A!�X � �] such that [A!� � X�] 2 I. Again,

this is identical to the usual LR(0) approach except that an item in I that has its dot marker at

the rule's recognition point cannot contribute a basis item to a goto state.

The complete collection of recognizer states is obtained by applying the closure function to

each distinct set of basis items created on the initial pass through the grammar. This creates one

or more sets of items corresponding to entry states of the recognizer. The goto function is now

repeatedly applied to every distinct set of items for every grammar symbol, until no new distinct

sets of items can be created.

If every position to the right of the recognition point in each rule is free, then our algorithm

for constructing the sets of items is essentially the same as Demers'. A di�erence only arises if

there is a gap in the sequence of free positions, as grammar G1 exempli�es.

Once all the sets of items have been created, the �nal task is to associate context sets with

items. The association may be de�ned in terms of a mapping function: context(Q; i) 2 VT
� is the

context associated with item i in state Q. We will describe an approach equivalent to that used

in construction of LALR(1) parsers. The context sets are needed for resolving shift-reduce and

reduce-reduce conicts.

The basis item for the goal symbol is given a context set of fag. In other words, we de�ne

context(QS ; [SS! ` � S]) = fag

All other context sets must satisfy the following two inclusion requirements.

8Q : context(Q; [A!� � B�]) � context(Q; [B! �]); B! 2 P

8Q : context(Q; [A!� � X�]) � context(goto(Q;X); [A! �X � �])

There is one additional requirement for the context sets of subgoal entry states. If

context(Q; [A!� � b{�1��2� ::: �k]) = �

then

8j(1 � j � k) : � � context(Q�j ; [S�j ! ` � �j])

Clearly, a solution to these set inclusion requirements must exist { we could simply choose

every context set to be VT . However, to resolve as many potential parsing conicts as possible,

we desire the smallest context sets that satisfy the inclusion requirements. An iterative procedure

7

may be used to compute these sets. However, we note that, analogously to LALR(1) parser

construction, more e�cient ways of computing context sets than blind iteration exist.

Once the context sets have been determined, we can create the entries of the two parsing

tables, T TABLE and N TABLE . In the following, we use Q (and Q0) to refer both to a set of

items and to the corresponding recognizer state. It should be clear by context which meaning is

intended.

T TABLE[Q; a] = announce rule i if Q contains an item [A!� � b{�] with an associated

context set of �, and a 2 �rst1(�; �).

T TABLE[Q; a] = shift to state Q0 if Q contains an item [A!� � a�] and goto(Q; a) = Q0.

T TABLE[Q; a] = pop k if Q contains an item [S�! ` � �] with associated context set �,

a 2 �, and j ` �j = k.

N TABLE[Q;B] = shift to state Q0 if Q contains an item [A!� � B�] and goto(Q;B) =

Q0.

If the above rules supply at most one action for each table entry in T TABLE and N TABLE ,

the parser is a deterministic recognizer for the language L(G). If more than one action should be

provided in some position, the parser would still be a recognizer for L(G), but it would be non-

deterministic. (A non-deterministic choice would have to be made between the multiple entries

when the parser is executed.) It is guaranteed that a deterministic parser will be created for a

LALR(1) grammar, as proved in the appendix.

One more point about the LAXLC(1) construction algorithm should be noted. If the recog-

nition point is chosen to be at the extreme right of each rule (a position which is necessarily free

for a LALR(1) grammar), our construction algorithm is identical to the LALR(1) construction

algorithm. (There is actually an insigni�cant di�erence in that the start state of the LAXLC(1)

recognizer will contain the extra item [SS! ` � S], and the recognizer will contain an explicit

halt state that has the item set f [SS! ` S �] g.)

The parser tables that are constructed by the LAXLC(1) construction algorithm for grammar

G1 are shown in Figure 2. We have taken the liberty of optimizing the tables slightly by introduc-

ing a new kind of action written as `*Pk'. This action is to be read as `read and pop'; it causes a

new input symbol to be read and k entries to be popped from the stack. Its e�ect is identical to

executing a `shift' action to a state in which the next action is `pop k + 1'. [The SGLC(1) tables

of Figure 1 contain an equivalent optimization because all the states that should contain just a

single `pop two' entry and nothing else have been merged into a single state (state Q8).]

A proof that the LAXLC(1) construction algorithm correctly constructs recognizers for the

LALR(1) class of grammars is given in the appendix.

4.3 LR(1)-Based Construction Algorithm

The LR(1)-based version of the extended, generalized left-corner parser construction algorithm is

easy to formulate. The initial di�erence is that we must use LR(1) items instead of LR(0) when

8

T Table N Table

State a b c a A B C

Q0 = QA
b1

Q1 = QBb
b3 s6

Q2 = QC
b5 s8

Q3 = Qa *P1

Q4 = Qb *P1

Q5 = Qc *P1

Q6 s7

Q7
b2 P3

Q8
b4 P2

Rule Pops LHS RHS Su�x

1 0 A Qa QBb QC

2 2 B

3 0 B Qb

4 1 C Qc

5 0 C Qc

Figure 2: LAXGLC(1) Parser Tables for Grammar G1

constructing states. That is, an item will have the form [A!� � � ; �] where � 2 VT
� is a set of

context symbols for the item. This means that two sets of items that di�er only in their context

sets would give rise to two distinct states in the LR(1)-based recognizer but to a single state in

the corresponding LALR(1)-based recognizer. The increase in the size of the grammar class that

can be accommodated is therefore o�set by an increase in the number of states and hence in the

size of the parser. This trade-o� is not usually considered to be worthwhile, and LALR(1) parser

generators are commonly preferred to LR(1) parser generators.

The XLC(1) construction algorithm is a straightforward generalization of the LAXLC(1)

construction algorithm. The relationship between the two methods is similar to that between

LALR(1) and LR(1). For this reason, we omit details of the algorithm.

4.4 Handling LL(1) Grammars

The left-corner parsing methods are a combination of bottom-up parsing and top-down parsing.

The XLC(1) and LAXLC(1) methods subsume the standard bottom-up parsing methods, LR(1)

and LALR(1), respectively. They accept the same grammar classes and they generate the same

parser tables when the recognition point of each production is placed at the extreme right-hand

end.

The standard top-down parsing method used in compiler construction is LL(1). A parser for

a LL(1) grammar can have a table-driven implementation or, very commonly, it is implemented

using the method known as recursive descent. Recursive descent parsers are easy to construct

manually from LL(1) grammars and have been used in many compiler implementations. It is

desirable, from the point of view of completeness, that the XLC(1) and LAXLC(1) construction

algorithms should be able to accept LL(1) grammars.

It has often been claimed that every LL(1) grammar is a SLR(1) grammar (and hence, also,

a LALR(1) grammar). Unfortunately, this is not quite true and counterexamples exist[5]. It is

9

particularly unfortunate because a LL(1) grammar has the property that every position in every

rule is free. That is, a semantic action may be inserted at any point in any rule and the grammar

still retains its LL(1) property.

Therefore, we suggest that the LAXLC(1) construction algorithm should be augmented with

an additional step. If it is discovered that the LALR(1) sets of items (needed in the initial step of

determining free positions) have unresolved conicts, we should then check the grammar to test

if it is LL(1). If it is LL(1), we simply mark every position in every rule as free and we must

also select the recognition point of each rule as being at the start of its right-hand side. The

remaining steps of the LAXLC(1) construction algorithm may then be followed as before. It is

straightforward to see that the construction algorithm will create a parser that is equivalent to a

LL(1) parser for the grammar.

We note that there is no need to augment the XLC(1) construction algorithm in this way since

every LL(1) grammar is a LR(1) grammar.

5 Recursive-Ascent-Descent Parsing

5.1 Recursive-Descent

A LL(1) grammar, G, may be characterized by the following property. For every non-terminal

A, each production rule A!� in G has a distinct one-symbol predictor set. The predictor set for

the rule A!� is sometimes written as DS(A!�), where DS stands for director set, and may be

computed as �rst1(�; follow(A)), where

follow(A) = f a j S)� �Aa� g

More detail about LL(1) grammars and e�cient algorithms for computing the predictor sets may

be found in standard compiler construction texts such as [1, 9].

Possibly the most important aspect of a LL(1) grammar is that it is easily converted into

directly executable code that implements a parser for the grammar. The conventional style for

this code provides one (recursive) procedure for each non-terminal symbol in the grammar. For

a non-terminal A that appears on the left of the rules A!�1, A!�2, ... A!�n, the procedure is

named A and has the following structure. In this example (and in subsequent examples), we use

10

a programming language notation similar to the C language.

void A() f

if (sym 2 DS(A!�1)) f

recognize �1;

g else if (sym 2 DS(A!�2)) f

recognize �2;

g else ...

: : :

g else if (sym 2 DS(A!�n)) f

recognize �n;

g else

report a syntax error;

g

We assume that the global variable sym holds the current terminal symbol.

The code that corresponds to the instruction recognize � has a particularly simple structure.

If � = X1X2:::Xk then the code has the following form.

f match X1; match X2; ... match Xk; g

where the instruction match X has one of two forms depending on whether X is a terminal or

non-terminal symbol. If X is a terminal, then the code for match X is as follows.

if (sym == X)

sym = new symbol from input;

else

report a syntax error;

Otherwise, if X is a non-terminal then the code consists of a call to the procedure responsible

for matching X, as follows.

X();

Once the recursive-descent parser has been constructed, semantic action code may be freely

inserted.

5.2 Recursive-Ascent

It has been observed by several people that a directly executable style of bottom-up parser,

analogous to the relationship between LL(1) and recursive-descent, can be created[3, 4, 14, 15].

The proposed schemes require the creation of one (recursive) procedure for each state in the LR

parser. The actions of each procedure are determined by the LR items for the corresponding

state. In general, the procedure has two parts. The �rst part is constructed from those items

that generate T TABLE actions, i.e. where the current input symbol selects a shift or a reduce

11

action. The second part is constructed from those items that generate N TABLE actions, i.e. for

goto transitions on non-terminal symbols. The overall structure of the procedure for a state Q is

as follows.

void Q() f

terminal actions;

while (TRUE) f

non-terminal actions

g

g

If one or more items have the form [A!� � a�] then they create a shift transition in the

recognizer to some state QQ on symbol a. The corresponding code in the terminal actions part

of the recursive-ascent parser is as follows.

if (sym == a) f

sym = next input symbol;

QQ();

g

If an item has the form [A!� �] then it corresponds to a reduce action. The action is triggered

if the current symbol is a member of the context set for this reduce item. The corresponding code

in the terminal actions part of the parser is as follows.

if (sym 2 �) f

lhs = A;

return*k;

g

where � represents the context set, k = j�j, and lhs is a global variable. The statement return*k

is meant to represent a multi-level procedure return construct. The statement return*1 causes a

return to the caller of the current procedure, return*2 returns to the caller of the caller, and so

on. In addition, return*0 is permissible and has no e�ect (it is equivalent to the null statement).

Multi-level returns are easy to simulate if they are not provided as a construct of the programming

language.

Non-terminal actions are shift actions (goto actions) and are created from items of the form

[A!� � B�]. If the destination state is QQ then the code is as follows.

if (lhs == B) QQ();

As a complete example, if state Q has the following set of items

[A! � bC] shift to state Qb

[D! � b] shift to state Qb

12

[E!BB �] reduce, context set = fd,eg

[A!B � Gc] shift to state QG

[D! aB � H] shift to state QH

(with additional information needed for the parser construction shown on the right) then the

corresponding recursive ascent procedure for Q would be as follows.

void Q() f

if (sym == b) f

sym = next input symbol;

Qb();

g else if (sym == d || sym == e) f

lhs = E;

return*2;

g else

report a syntax error;

while (TRUE) f

if (lhs == G) QG();

if (lhs == H) QH();

g

g

Note: the apparently non-terminating while loop is eventually broken when one of the proce-

dures QG or QH, or one of their descendant procedures, performs a multi-level return that passes

control back to an ancestor of Q.

Recursive ascent parsers, however, appear to have little practical value. Three reasons can be

listed. First, few people would have the inclination or the expertise to construct a recursive ascent

parser by hand. Typical grammars for programming languages have recognizers with hundreds

of states. Even for small grammars, manual computation of the LR(0) sets of items and their

context sets is an error-prone activity. Thus, one of the main reasons for the popularity of recursive

descent, the ability to code the parser manually, does not apply. Second, only an expert should

attempt to insert semantic code into a recursive ascent parser manually. Not only would there

be di�culty in determining correct positions for code insertions, but there is also the problem

that the same semantic code may have to be replicated in many states. Third, recursive ascent

parsers are not competitive with other forms of LR parsing in terms of space or speed. A recursive

ascent parser does execute faster than a table-driven equivalent, but an enormous space penalty

must be paid. The data in Table 1, given later, includes comparisons between a recursive-ascent

parser and a table-driven LALR(1) parser for the same grammar. In any case, recursive ascent

parsing should be compared against other forms of directly executable LR parsers[10, 12]. These

other approaches produce parsers that are still faster than recursive ascent parsers yet they have

considerably smaller space requirements.

In summary, we can think of no reason why a recursive ascent parser should be used in a

13

Control

Component

Rules

Component

-

�

initial entry

?

Figure 3: Two-Component Model for a Parser

compiler. However, in the next section of the paper, we will show why a directly executable

version of LAXLC(1) does appear to be a useful and practical parsing method.

5.3 Directly-Executable Left-Corner Parsers

It is straightforward to separate the code of a recursive descent parser into two parts. One

component contains a separate procedure for each production rule. If rule number 3 is, for

example, A! aBCd, we might construct a procedure for it like the following.

void Rule 3() f

match(a);

B();

C();

match(d);

g

where match is a macro or procedure that performs the task of matching the current symbol

against the terminal supplied as its argument. The other component of the parser contains a

separate procedure for each non-terminal symbol.

We might diagram this subdivision of the parser as in Figure 3. The point to be observed with

this model of the parser is that the user can freely insert semantic code into the rules section.

This is as natural as inserting code, or markers that signal semantic actions, into the original

grammar and re-processing the grammar through a parser generator. Many programmers would

consider it to be less trouble also.

The LAXLC(1) parser can also be implemented according to the pattern shown in Figure 3. As

in the recursive descent version, the rules component of the parser can also contain one procedure

for each production. If, for example, A! a�b�Cc�d�D� is rule number 4 in the grammar, where

14

the free positions are marked, we can implement this rule by the following code.

void Rule 4() f

match(b);

Cc();

match(d);

D();

g

The match macro or procedure is the same as before. The procedure calls Cc() and D() invoke

the control component of the parser to (recursively) begin new parses at the entry states QCc and

QD, respectively.

That is, the control component must implement the recognizer in a slightly di�erent way to

that described previously for a left-corner parser. Shift actions are implemented as before, causing

a new state to be pushed onto the stack. However, the action for announce rule i, where rule

i is A!�b{�, is to pop j�j states from its stack exposing top as the top stack entry, to push

N TABLE[top;A] onto the stack, and to then call the procedure Rule i(). The action for pop k

is to pop k states from the stack and then exit from the parser, returning to the caller. (In all

cases except for the very last return, this will return control back into one of the rule procedures.)

The control component of the parser may be implemented in either a table-driven manner or

in the directly executable style of recursive ascent. In the latter case, we would refer to the entire

parser as being recursive-ascent-descent (ascent for the control component and descent for the

rules component). In practice, a table-driven implementation of the control component might be

preferred because it is smaller and can perform syntax error recovery more easily.

A big advantage of the two component form of LAXLC(1) parser is that it gives the user the

opportunity to insert semantic code directly into the appropriate production rules. Note that

every free position in the grammar is available, and no non-free positions are available. Thus

the user is given the freedom of recursive descent but for any LL(1) or LALR(1) grammar. The

only point on which the approach su�ers in contrast with recursive descent is that mechanical

generation of the parser is a practical necessity. But, given a published LALR(1) grammar for

a language, the unadorned grammar need be processed by the parser generator once only. From

that point on, the user can incrementally insert semantic code into the rules component of the

parser and need never run the parser generator again.

The recursive-ascent-descent parsing approach should also have practical value in Prolog appli-

cations. A commonly used method for syntax checking and processing input is to use a technique

known as de�nite clause grammars (or DCGs)[17]. In fact, a DCG is a form of recursive descent

parser. We therefore propose that the LAXLC(1) method could be used to generate parsers in

Prolog. The rules component of the parser would look very similar to a DCG recognizer and the

user would have the same freedom to insert semantic actions into the Prolog code.

As a �nal note, we should point out that a similar two-component form of XLC(1) parser

can also be constructed. There is, however, a complication. The XLC(1) parser construction

algorithm will usually create several versions of an entry state QA, one for each context in which

A needs to be recognized. The control component of the parser would therefore need to perform

15

extra bookkeeping work to remember the current context when it calls a procedure Rule i and

to use this context information to select the correct version of the entry state should control

recursively re-enter.

6 Experience

The LAXLC(1) construction algorithm has been used as the basis for a parser generator im-

plementation. The parser generator normally selects the �rst free position in each rule as the

recognition point. However the default choice can be overridden, if desired, in order to generate

a pure recursive-ascent parser. The parser is normally created as two C source code �les, corre-

sponding to the control component and rules component, as explained above. By placing the rules

component in a �le by itself, it becomes much more amenable to manual editing. The control

component can optionally be created in either a table-driven form or in the recursive ascent (pure

code) style. As observed in [15], a considerable improvement in execution e�ciency is possible if

the patterns of control ow in the recursive ascent routines are analyzed and translated into proper

loop structure. A similar technique, but based on interval analysis[1], has been incorporated into

our implementation.

Using a grammar for the C language as a test case, comparative �gures for �ve di�erent parsers

generated from the grammar are given in Table 1. Before commenting on the relative performances

and sizes of the parsers, we should begin by stating how each parser was constructed. The �rst

row of the table gives data for a recursive-ascent-descent parser where both the Control and

Rules components are directly executed (indicated by the d entries shown for both component

descriptions). The second row is similar except that the control component is implemented in

a conventional table-driven manner (indicated by a t entry for the control component form).

The third row describes a pure recursive-ascent parser, hence the control component is directly

executed and the rules component is empty (indicated by `{' for its form). The fourth row is similar

except that the control component is table-driven { clearly this is equivalent to a standard table-

driven LALR(1) parser. For comparison purposes, a �fth row giving data for a parser generated by

yacc[11], the standard parser-generator on the Unix system, is also provided. Di�erences between

the fourth and �fth rows reect only on the di�erent representations chosen for entries in the

parser tables and on di�erent table compression techniques used. (Only a simple unsophisticated

technique was used to compress the control tables whose sizes are shown in the second and fourth

rows.)

7 Conclusions

One issue that is likely to be a concern is the ability to incorporate syntactic error recovery

techniques into the parser. Many techniques have been developed for use with the LR methods.

Recovery techniques for use with top-down methods are usually considered to be inferior because

of the di�culty of making contextual information available to the parser. What is possible with

the left-corner parsers as described here?

16

Parser Parser Form Size (Source Lines) Size (Object Bytes) Speed

Control Rules Control Rules Control Rules

1. d d 6273 1193 25032 8496 2.71

2. t d 697 1193 8938 8496 1.03

3. d { 12639 0 59704 0 2.81

4. t { 1055 0 14240 0 1.26

YACC t { 601 0 5832 0 1.00

Table 1. Comparisons between Parsers

If a table-driven implementation of the control part of the left-corner parser is used, it is

possible to simulate an equivalent of the state stack that would be maintained by a LR parser. It

is possible even if the rules component of the left-corner parser is directly executed. Thus, when

a syntax error is detected, exactly the same information can be made available to the recovery

algorithm as would be available to any LR recovery method. Implementing the recovery actions

that the algorithm requires is more problematic, however. If the rules component of the parser

is directly executed, some kinds of recovery action may be di�cult or impossible to perform. A

reasonable suggestion, therefore, is to restrict our attention to strategies whose recovery actions

are to skip input symbols and/or to insert new symbols in the input stream. One such technique

was devised for LR parsers by R�ohrich[16] and could easily be adapted for use with our left-corner

parsers. An alternative possibility is to augment the grammar with error productions and use a

technique similar to that employed in yacc[11].

We conclude by summarizing the advantages of the left-corner parsing methods described here.

They provide the best of both worlds in combining the full power of the bottom-up LR methods

with the ease of use of the top-down recursive-descent method. Every position in a rule where a

semantic action may be inserted is available to a compiler developer without re-running a parser

generator. The size of the parser and its speed are similar to those observed with other parsing

methods. Finally, a multiple-entry parser is automatically generated, with an entry point (or entry

parameter) for every non-terminal symbol in the grammar that can be handled meaningfully.

Appendix

The result that the LAXLC(1) construction algorithm creates correct, deterministic, recognizers

for LALR(1) grammars is based on the following sequence of steps. First, every production in a

LALR(1) grammar has a free position at its right-hand end (Lemma 1). Second, the LAXLC(1)

construction algorithm is identical to the LALR(1) construction algorithm if all rule recognition

points are set at the ends of the right-hand sides (Lemma 2). Third, if the recognition point of

one rule is moved left to the next free position (assuming there is one), the recognizer constructed

by the LAXLC(1) algorithm is deterministic and accepts the same language as before. Fourth, a

series of movements of the recognition points to the left can achieve any allowable con�guration

17

of recognition point positions.

The �rst two steps of the argument correspond to the following two lemmas.

Lemma 1 Every production in a LALR(1) grammar has a free position at its right-hand end.

Proof It is straightforward to show that the Purdom-Brown algorithm for �nding free positions

[13, Algorithm 2] must mark the right-hand position of every rule as free if the recognizer is

deterministic. This is true by de�nition for a LALR(1) recognizer generated from a LALR(1)

grammar. Finally, [13, Theorem 13] proves the correctness of the marking algorithm.

Lemma 2 The LAXLC(1) construction algorithm generates the same recognizer as the LALR(1)

construction algorithm if the recognition point of each rule is selected to be at the end of the

rule's right-hand side.

Proof We will �rst compare sets of items generated by the two construction algorithms, ignoring

context set di�erences. For the purposes of comparing an item used by the LAXLC(1) algorithm

with an item used by the LALR(1) algorithm, the recognition point marker should be ignored.

We observe that the dot marker in an item cannot coincide with the rule's recognition point

if the dot precedes a symbol (either a terminal or a non-terminal). Thus, the LAXLC(1) closure

function, cl, will produce the same result as the standard LR(0) closure operation. Similarly, the

LAXLC(1) goto function will produce the same set of items for the destination state.

The start states of the two recognizers di�er in a very minor way. For a grammar G =

< VN ; VT ; P; S >, the LAXLC(1) recognizer has a start state, Q, formed by cl(f [SS! ` � S] g)

whereas the LALR(1) algorithm given by [1] creates its start state, Q0, from cl(f[S0! � S]g),

where S0!S is an additional rule (i.e., an augmented grammar is used). If we make the obvious

correspondence that [SS! ` � S] � [S0! � S], and [SS! ` S �] � [S0!S �], then the

two recognizers have identical sets of items and have identical transitions between states.

Next, we can consider the context sets associated with items in the two recognizers. We may

ignore the rule that applies to context sets for additional entry states in the LAXLC(1) recognizer,

since there are no additional entry states created. In this case, the given LAXLC(1) context set

inclusion rules correspond to the algorithm in [1, Fig. 4.43] for computing LALR(1) context sets.

Finally, we observe two points. When the recognition point of rule i is at the end of its right-

hand side, the e�ect of the action announce rule i is identical to that of a LALR(1) recognizer

performing the action reduce by rule i. Second, the LAXLC(1) recognizer will have a pop action

in only one state, namely in the state formed by goto(Q,S). This will be a pop 2 action and, if

executed, it must cause the stack to become empty and hence cause the recognizer to halt. The

LALR(1) recognizer will have the action reduce by rule S0!S instead, and its e�ect is also to

cause the recognizer to halt.

Therefore we conclude that the LAXLC(1) and LALR(1) recognizers perform identical parsing

actions on all input sentences. They are equivalent.

The third step of the argument is proved by Theorem 1, below. This theorem is based on a

comparison of states and their sets of items for two LAXLC(1) recognizers. The �rst recognizer,

18

M, is a deterministic LAXLC(1) recognizer constructed from grammar G = < VN ; VT ; P; S >. In

G, we assume that rule i is A!� �X1;X2; :::Xk b{ , where k > 0, � marks a free position, each

position between Xi and Xi+1 is not free for 1 � i < k, and b{ marks the recognition point of rule

i. The second recognizer, M0, is constructed from grammar G0. G0 is identical to G except that

rule i is replaced by A!�b{ X1;X2; :::Xk .

When comparing an item in a state of M with an item used in constructing M0, we ignore

the presence of recognition point markers in items. For example, the items [A!� � B b{] and
[A!� � b{B] would be taken to be equivalent.

We need to de�ne one term that is used in the main theorem.

De�nition Consider a start state QS and a cycle-free path that begins at state QS and ends at

a state Q. Each edge in the path corresponds to a transition on some terminal or non-terminal

symbol. The sequence of symbols along the path will be referred to as an accessing sequence for

state Q relative to start state QS.

Theorem 1 M0 is a deterministic recognizer that accepts the same language as M.

Outline of Proof We begin by comparing the states of M and M0. In the following, any state

name that has a prime, such as Q0, refers to a state in M0; similarly, a state whose name lacks

a prime belongs to M. We consider a state in M and a state in M0 to be equivalent if they have

equivalent sets of items. (The context sets associated with the items are ignored.)

Since G is reduced, M must contain at least one state that includes the item

[A!� � X1X2:::Xk b{]:
Call one such state Q and let the accessing sequence of Q be �. M must also contain an additional

k states Q1, Q2 ... Qk, reached from Q by following a transition labelled X1, then a transition

labelled X2, and so on. State Qj, 1 � j � k, includes [A!�X1:::Xj � Xj+1:::Xk b{] as a core

item.

M0 must contain a state, Q0, that has the same accessing sequence, �, as Q and Q0 necessarily

includes the item [A!� � b{ X1X2:::Xk]. The LAXLC(1) rule for construction of entry states

forces M0 to have an entry state with the single basis item [S�! ` � X1X2:::Xk]. Call this

entry state Q0

0. M
0 must have an additional k states Q0

1, Q
0

2 ... Q
0

k reached from Q0

0 by following a

transition labelled X1 from Q0

0, then a transition labelled X2, and so on. State Q0

j , 1 � j � k, has

[SX1:::Xk
! ` X1X2:::Xj � Xj+1:::Xk] as a core item. These states inM and M0 are diagrammed

in Figure 4.

The assumption that a free position is located between � and X1 in the rule A!�X1:::Xk

implies that state Q1 has only a single core item, the one shown in Figure 4. The LAXLC(1)

construction rules cause the corresponding state in M0, Q0

1, to also have the single core item

shown. If we take [A!�X1:::Xj � Xj+1:::Xk b{] and [SX1:::Xk
! ` X1:::Xj � Xj+1:::Xk] as

being equivalent items, then it follows that (1) the states Qj and Q0

j, 1 � j � k are equivalent,

and (2) Q is equivalent to Q0 [Q0

0. Furthermore, transitions labelled by a particular symbol from

equivalent states in the two machines lead to equivalent states.

19

Q: [A!� � X1X2:::Xk b{]

Q1: [A!�X1 � X2:::Xk b{]

Q2: [A!�X1X2 � :::Xk b{]

Qk: [A!�X1X2:::Xk � b{]

?

X1

?

X2

���

?

Xk

Q0: [A!� � b{X1X2:::Xk]

Q0

0: [SX1:::Xk
! ` � X1X2:::Xk]

Q0

1: [SX1:::Xk
! ` X1 � X2:::Xk]

Q0

2: [SX1:::Xk
! ` X1X2 � :::Xk]

Q0

k: [SX1:::Xk
! ` X1X2:::Xk �]

?

X1

?

X2

���

?

Xk

Figure 4: Equivalent States in M and M0

Next, we can show that the two context sets

context(Q; [A!� � X1:::Xk b{])
and

context(Q0; [A!� � b{ X1:::Xk])

must be equal. Let � denote these context sets. Then we must have

�rst1(; �) � context(Q0

0; [SX1:::Xk
! ` � X1:::XjXj+1:::Xk]

Equality of the sets does not necessarily hold because there may be states other than Q in M that

contain the item [A!� � X1:::Xk b{] and because state Q0

0 in M0 may be required for some rule

other than rule i.

The rules for propagation of context sets imply that reduce items for states in M that are

reachable from Q must be subsets of the context sets for the equivalent reduce items in M0. The

structural equivalence of the two machines plus the inclusion property for the context sets proves

the theorem in one direction. Namely, every sentence that can be recognized by M must also be

recognizable (perhaps non-deterministically) by M0.

The converse problem, that of showing that every sentence recognizable by M0 is also recog-

nized by M, must now be considered. The structural equivalence of the two machines implies

that any sentence recognized by M0 but not by M must be involve non-deterministic recognition.

That is, one or more states in M0 must contain conicts. Such a conict must occur in Q0

0 or in

20

one of its successor states. Let x denote one of the conicting lookahead symbols. If the conict

is a reduce-reduce, x occurs in the context sets of both reduce items. Otherwise, if the conict

is a shift-reduce, x occurs in the context set of the reduce item. The x symbol in the context

sets must have been propagated according to the rules in section 4.2. The symbol cannot have

been spontaneously generated (to use the terminology of [1]) in any of the states Q0

i, 0 � i � k,

otherwise the same conict would have to exist in the equivalent state of M. Thus one of these

states must have inherited the symbol from an external predecessor. If this external predecessor

is not a state containing the item [A!� � b{X1:::Xk] (without loss of generality, assume this

state is Q0) then, again, the same conict would have to exist in M. The only possibility is that

x is inherited from Q0 according to the LAXLC(1) rule for context set propagation. But Q and

Q0 have the same context sets and therefore propagation from Q to Q1, and so on, should lead to

the equivalent conict on x in M.

Corollary The LAXLC(1) construction algorithm generates a deterministic recognizer for any

LALR(1) grammar.

References

[1] Aho, A.V., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques and Tools.

Addison-Wesley, Reading, MA (1985).

[2] Aho, A.V., and Ullman, J.D. The Theory of Parsing, Translation and Compiling, Vol. I:

Parsing. Prentice-Hall, Englewood Cli�s, NJ (1972).

[3] Aretz, F.E.J.K. On a Recursive Ascent Parser. Information Processing Letters, 29,3 (Nov.

1988), pp. 201-206.

[4] Barnard, D.T., and Cordy, J.R. SL Parses the LR Languages. Computer Languages 13,2

(1988), pp. 65-74.

[5] Beatty, J.C. On the Relationship Between LL(1) and LR(1) Grammars. Journal of ACM,

29,4 (Oct. 1982), pp. 1007-1022.

[6] Chapman, N.P. LR Parsing: Theory and Practice. Cambridge University Press, Cambridge,

U.K. (1987).

[7] Demers, A.J. Generalized Left Corner Parsing. Proc. 4th Symposium on Principles of Pro-

gramming Languages (1977), pp. 170-182.

[8] DeRemer, F.L. Simple LR(k) Grammars. Communications of ACM, 14,7 (July 1971), pp.

453-460.

[9] Fischer, C.N., and LeBlanc Jr., R.J. Crafting A Compiler. Benjamin/Cummings, Menlo Park,

CA (1988).

21

[10] Horspool, R.N., and Whitney, M. Even Faster LR Parsing. Software { Practice & Experience

20,6 (June 1990), pp. 515-535.

[11] S.C. Johnson, `YACC { Yet Another Compiler Compiler', UNIX Programmer's Manual, 7th

Edition, 2B, (1979).

[12] Pennello, T.J. Very Fast LR Parsing. Proc. 1986 Symposium on Compiler Construction,

ACM SIGPLAN Notices 21,7 (1986), pp. 145-151.

[13] Purdom, P., and Brown, C.A. Semantic Routines and LR(k) Parsers. Acta Informatica, 14

(1980), pp. 299-315.

[14] Roberts, G.H. Recursive Ascent: An LR Analog to Recursive Descent. ACM SIGPLAN

Notices, 23,8 (Aug. 1988), pp. 23-29.

[15] Roberts, G.H. Another Note on Recursive Ascent. Information Processing Letters, 32,5

(Sept. 1990), pp. 263-266.

[16] R�ohrich, J. Methods for the Automatic Construction of Error Correcting Parsers. Acta In-

formatica, 13,2 (1980), pp. 115-139.

[17] Sterling, L., and Shapiro, E. The Art of Prolog. MIT Press, Cambridge, MA (1986).

22

