
- 1 -

Constructing Word-Based
Text Compression Algorithms

Abstract
Text compression algorithms are normally defined in terms of a source
alphabetΣ of 8-bit ASCII codes. We consider choosingΣ to be an alphabet
whose symbols are the words of English or, in general, alternate maximal
strings of alphanumeric characters and non-alphanumeric characters. The
compression algorithm would be able to take advantage of longer-range
correlations between words and thus achieve better compression. The large
size ofΣ leads to some implementation problems, but these are overcome
to construct word-based LZW, word-based Adaptive Huffman, and word-
based Context Modelling compression algorithms.

1 Introduction

Most text compression algorithms perform compression at the character level. If the algo-
rithm is adaptive (as, for example, with any of the Ziv-Lempel methods), the algorithm
slowly learns correlations between adjacent pairs of characters, then triples, quadruples
and so on. The algorithm rarely has a chance to take advantage of longer range correla-
tions before either the end of input is reached or the tables maintained by the algorithm are
filled to capacity. If text compression algorithms were to use larger units than single char-
acters as the basic storage element, they would be able to take advantage of the longer
range correlations and, perhaps, achieve better compression performance. Faster compres-
sion may also be possible by working with larger units.

In this paper, we explore the use ofwords as the basic unit. When the source file is
an English-language document, say, we have no difficulty in recognizing a word as con-
sisting of a sequence of consecutive letters. Each word is separated from the next by space
and/or punctuation characters. Following the same approach as Bentley et al. [2], we gen-
eralize slightly by considering a text file to consist of alternating alphanumeric-strings and
punctuation-strings, where a word-string is a maximal sequence of alphanumeric charac-
ters and a punctuation-string is a maximal sequence of non-alphanumeric characters. We
use the generic nameword to refer to either an alphanumeric string or a punctuation string.
The generalization permits us to decompose all kinds of text files — program source code,
input to a word-processor, etc. — into sequences of words.

R. Nigel Horspool
Department of Computer Science

University of Victoria, P.O. Box 3055
Victoria, B.C., Canada V8W 3P6

nigelh@csr.uvic.ca

Gordon V. Cormack
Department of Computer Science

University of Waterloo
Waterloo, Ont., Canada N2L 3G1
gvcormack@waterloo.edu

- 2 -

Existing compression algorithms that consider the input as a sequence of words are
ad hoc in nature. The scheme described by Bentley et al. [2] maintains a list of words
sorted into least-recently used order. A word is encoded by its position in this dynamically
changing list. Words near the front of the list tend to have shorter codes than those near the
end and, assuming words in frequent use stay near the front of the list, compression is
achieved. The general approach is called Move-To-Front or MTF in [1]. Generalizations
of the scheme that use other heuristics than MTF to manage the list appear in [5] and [6].

A less ad hoc approach would be to consider words as forming the symbols of an
alphabet. Such an alphabet can, in principle, be used as the basis of any existing compres-
sion algorithm. For example, LZW (aka the UNIXcompress command) [7] could work by
encoding sequences of words instead of sequences of characters. If particular sequences
tend to recur in the source text, compression would be achieved.

However, we need to overcome a major problem with word-based compression
algorithms. The number of distinct words that the compression algorithm has to cope with
is, for all practical purposes, unbounded. Thus it makes no sense to implement an algo-
rithm that requires a pre-determined finite alphabet. To use LZW as an example again, we
cannot initialize the LZW string table with all sequences of length one, as required in the
usual implementations of LZW. Instead, we have to modify the algorithms so that they
either pre-determine the set of words used in the source input (an inherently two-pass
strategy) or they dynamically expand the source alphabet as each new word occurs. We, of
course, advocate single-pass strategies as being more useful for practical applications.

The following sections of this paper will consider the problem of generalizing a
compression algorithm to be word-based, then particular word-based algorithms will be
described, and finally some experimental results will be reported.

2 Using Word-Based Alphabets

Following the scheme of [2], we can decompose textual input into a sequence of words,
where alternate words are composed from alphanumeric characters and from non-alpha-
numeric characters. For example, a line of a Pascal source code file that reads

xCoord2 := xCoord2 + delta;

would be decomposed into the following elements, where spaces are made visible and the
line-feed character at the end of line is shown as a C-style character constant'\n' .

It is easy to transform an existing compression algorithm to operate on the alpha-
bet of words if an extra pass over the source data is permitted. An initial pass enters the
words (both alphanumeric and non-alphanumeric) into a dictionary. Once the pass is com-
plete, we know all the symbols of the word alphabet and it should now be possible to con-
struct a version of the compression algorithm that uses this new alphabet. Of course, the
dictionary (or, more likely, a compressed form of the dictionary) must be transmitted with
the output from the compression algorithm.

"_ _ _ _" "xCoord2" "_ := _" "xCoord2" "_ + _" "delta" ";\n"

punct punct punct punctalpha alpha alpha

- 3 -

For the majority of applications, two passes over the source text are undesirable.
An adaptive scheme that dynamically expands the dictionary as new words are encoun-
tered is preferable. A general mechanism for handling a new word involves the use of an
escape code. When the compression algorithm hits a new word, it can output an escape
code followed by some representation of the text of the new word. Then it can add the new
word to the next available slot in the dictionary and continue as though the word had been
present in the dictionary all the time.

This general escape mechanism, however, does not extract the maximum amount
of redundancy from the compression algorithm. As the following examples show, it is pos-
sible to integrate the escape mechanism into the compression algorithm more tightly and
do better. For one thing, we should be able to take advantage of the fact the the alphanu-
meric and non-alphanumeric words strictly alternate. Thus, we should use two word-based
source alphabetsΣA, the alphabet of alphanumeric words, andΣP, the alphabet of punctu-
ation strings. If the symbols from the two alphabets are identified by symbol numbers, the
numberings need not be disjoint, as the decoding algorithm should always know by con-
text which source alphabet to expect. A second way in which the escape mechanism can
be better integrated is by making either an occurrence of the escape code or the symbol
that corresponds to a new word implicit. Such integration may increase the complexity of
the implementation somewhat.

3 Some Word-Based Algorithms

3.1 Word-Based Adaptive Huffman Coding

Adaptive Huffman coding is the basis of the UNIXcompact program. The compression
program maintains a count of how many times each symbol has occurred so far in the
source text. To encode the next symbol, the symbol counts are used as estimates of the rel-
ative probabilities of the symbols and a table of Huffman codes based on these frequencies
is constructed. The Huffman code in the table is used to encode the next symbol. (A minor
detail that needs to be taken into account is that symbols in the alphabet that have not yet
occurred in the source text must be assigned a non-zero probability estimate.) The decod-
ing algorithm can re-create the same set of symbol frequencies from its de-compressed
text and use the table to re-construct the same table of Huffman codes. Thus it can
uniquely decode one symbol, update the frequency count of that symbol, update its table
of Huffman codes and then decode the next symbol, and so on.

Algorithms exist for efficiently updating the Huffman codes when small incremen-
tal changes to the probability estimates are made (as is the case here) [3], [4]. In spite of
the widespread use of these algorithms in implementations, Adaptive Huffman coding is
not renowned for its speed (nor for its compression performance).

The overall structure of a word-based Adaptive Huffman algorithm may take the
form shown in Figure 1. The algorithm uses two tables of frequencies,AFreq and
PFreq , and two tables of Huffman codes,AHuffman andPHuffman , for the two differ-
ent alphabetsΣA andΣP. Details concerning the initialization and the proper termination
of the algorithm at the end of input are omitted for brevity.

- 4 -

In what form should the text of new words be transmitted? New words occur in
short input files with a relatively high frequency and efficient encoding of them is highly
desirable. To be consistent with the top-level word-based compression strategy, we pro-
pose that adaptive Huffman coding be used for the individual characters of the words.
Since an algorithm for updating the Huffman codes must already be available for the two
source alphabetsΣA andΣP, it would not impose a burden on the implementer to use it for
four different source alphabets. (Four because the decoder knows whether a new word is
going to be composed from alphanumeric characters or non-alphanumeric characters, and
thus the two alphabets may be encoded separately.)

The compression performance of word-based Adaptive Huffman coding is excel-
lent, as the experimental data at the end of this paper shows. The execution speed is not so
good however. As theΣW andΣP alphabets grow in size, the time required to update the
tables of Huffman codes slowly and inexorably increases. The average time complexity of
the update algorithms appears to be O(n), where n is the size of the alphabet; the worst-
case time complexity is O(n log n). If word-based Adaptive Huffman coding were to
become practical , some technique would be needed to prune infrequently used symbols
from theΣW andΣP alphabets. (Certainly we should delete words whose Huffman codes
become so long that fewer bits would be needed to re-transmit the word as a new word.)
Several pruning strategies based on an analogy with page replacement algorithms in vir-
tual memory systems are suggested in [6].

3.2 Word-Based LZW

The LZW (Lempel-Ziv-Welch) compression algorithm [7] is the basis of the UNIXcom-
press program and of the compression strategies implemented in many commercial prod-

Figure 1 Word-Based Adaptive Huffman Algorithm

repeat
read one alphanumeric word, AW;
if AW ∉ ΣA then

output AHuffman[Escape];
output text of AW;
ΣA := ΣA ∪ {AW};
AFreq[AW] := 1;
AFreq[Escape] := AFreq[Escape] + 1;

else
output AHuffman[AW];
AFreq[AW] := AFreq[AW] + 1;

endif
AHuffman := recomputed table of Huffman codes constructed

from the frequency table, AFreq;
read one non-alphanumeric word, PW;
if PW ∉ ΣP then

...

... (* continuing similarly to the above *)

...
until end of input is reached;

- 5 -

ucts, both hardware and software. Its main virtue is speed, while simultaneously achieving
good, but not spectacular, compression performance.

LZW is easy to explain. The algorithm maintains a string table that associates a
unique integer with each string. To encode the next segment of source text, the compres-
sion algorithm reads the longest possible sequence of characters that comprises a string in
the table. It outputs the number associated with the string, using a simple binary number-
ing system. If the string that was read wasω andΚ is the following character in the source
text, the new stringωΚ is added to the string table and the next unused number is associ-
ated with the string. The compression algorithm then continues, reading input characters
starting withΚ looking for the longest string that is contained in the table.

The string table is initialized with all strings of length one. This guarantees that at
least one character can be read from the input and matched against a string in the table.
The strategy for adding new strings guarantees that if a stringω is in the table, then all pre-
fixes ofω must also be present in the table. This property simplifies the task of matching a
maximal length sequence of input characters against the strings in the table, and also per-
mits the table to be implemented by an efficient data structure (such as a trie). As stated
above, the encoding of string numbers is simple (and is another reason for the speed of
LZW implementations). If, at some moment, the table holds N strings (and these will be
numbered 0 through N-1), a binary number comprised of log(N+1) bits is used to encode
the next string number to be output.1

A word-based LZW implementation cannot initialize the string table with all
strings of length one. This is because theΣW andΣP alphabets may be very large and the
symbols are not known in advance (unless a pre-pass over the text source is performed).
Thus, we will again advocate the use of an escape mechanism.

The word-based LZW algorithm builds up two kinds of strings of symbols. All
strings will consist of alternate symbols fromΣW andΣP, but we can segregate strings
whose initial symbol is an element ofΣW in a separate table from those strings whose ini-
tial symbol is an element ofΣP. Numbering of strings in the two tables need not be disjoint
because the decoding algorithm can always deduce whether the next string it receives
should begin with aΣW or aΣP symbol.

The structure of the main body of the algorithm has the form shown in Figure 2.
We useλ to denote the empty string and <<α,b>> to denote a string constructed by
appending the symbolb to the stringα. The two tables of strings are namedATable and
PTable . A string numbering scheme that reserves a code (presumably 0) for Escape must
be used. The empty stringλ may be implemented by the same number because an encod-
ing of λ is never output.

Again, we must decide how the characters of a new word should be encoded. As
before, the compression performance is compromised for small files unless a reasonably
efficient coding scheme is used for the characters. Again, it is possible to apply the same

1. The original LZW algorithm, as described in [7], proposes a maximum table size of 4096 strings and that
12-bit numbers be used regardless of table occupancy.

- 6 -

basis algorithm for the lower-level encoding as at the higher word-based coding level.
There is a caveat however. LZW encodes sequences of characters. We must treat the end
of each new word as being equivalent to the end-of-file, otherwise the encoding of parts of
two consecutive new words would have to be combined. (We expect correlations between
characters at the end of one new word and characters at the beginning of the next new
word to be weak.)

Compression performance is again excellent. Speed degradation as the two word-
string tables fill up is hardly noticeable when they are implemented as very large hash
tables. However, a pruning strategy to prevent the tables from reaching too high an occu-
pancy to permit fast look-ups (greater than 80% occupancy, say) is again desirable.

3.3 Word-Based First-Order Context Compression

The Adaptive Huffman coding algorithm, described above, uses a zero-order Markov
model to predict properties of the source text. Much better compression may be achieved
if a higher-order Markov model is used. Higher-order models form the basis of the PPM
(prediction by partial match) family of compression algorithms [1], for example.

When the symbols are English words, we can expect correlations between succes-
sive symbols. For example, the word ‘the’ would have a high probability of being fol-
lowed by a word that is a noun or adjective but a low probability of being followed by
another article or a verb. An algorithm based on a first-order model could maintain statis-
tics on the observed frequencies of word pairs in the text compressed so far. Then given

Figure 2 Word-Based LZW Compression Algorithm

ω := λ;
repeat

if currentIsAlph then read next alphanumeric word X;
else read next non-alphanumeric word X; endif
if X is a new word then

if ω λ then output string number of ω endif
output Escape; output text of X;
ω := λ;
startIsAlph := not currentIsAlph;

else
if startIsAlph then search ATable for string << ω,X>>;
else search PTable for string << ω,X>>; endif
if << ω,X>> was found then

ω := << ω,X>>;
else

output string number of ω;
add << ω,X>> to the appropriate table, ATable or PTable;
startIsAlph := currentIsAlph;
ω := << λ,X>>;

endif
endif
currentIsAlph := not currentIsAlph;

until end of input is reached;

- 7 -

that the previous word to have been encoded is Wi, we can use the observed frequencies to
estimate the conditional probabilities P(Wj|Wi) for the next word. These probabilities may
passed to an arithmetic coding subroutine for transmitting the next word.

If the compression algorithm is to be targeted to compression of natural language,
we should treat the two alphabets differently. There should be strong correlations between
successive alphanumeric words but, presumably, weak correlations between successive
punctuation strings. Also, we can expect correlations between the punctuation and the
alphanumeric words – for example, a punctuation string that contains a period would sig-
nify the end of a sentence and would therefore predict that the next alphanumeric word
would begin with an upper-case letter (and would be quite likely to be an article). The
algorithm structure shown in Figure 3 assumes only correlations between successive sym-
bols fromΣA. In the algorithm, the variablePrevW represents the previous alphanumeric
word to have been transmitted. The arithmetic coding algorithm uses the frequency count
Freq[PrevW,X] to estimate the relative probability for each word X inΣΑ.

The natural choice for encoding the text of punctuation strings and words is arith-
metic coding applied to individual characters. The probability estimates needed as input to
the algorithm can be based on the frequency of occurrence of each character. Compression
performance is improved if probabilities obtained from the first-order model are blended
with probabilities from the 0th-order model when the number of observations is too low to
make reliable first-order predictions. Blending the two models is a scheme used in PPMC
[1], for example. Blended probabilities are used to obtain the results reported in Table 1.

Another way to improve the significance of the statistics and also a way of reduc-
ing the volume of data that must be retained is to merge statistics for similar words. An
obvious way to group words into a small number of classes is by their parts of speech in
the English language. This gives rise to our final word-based algorithm. It is described in
the following section.

Figure 3 Arithmetic Coding with Word-Based First-Order Context Model

PrevW := Escape;
repeat

read next punctuation word AP and output text of AP;
read next alphanumeric word, AW.
if AW ∉ ΣΑ then

output Escape by arithmetic coding; output text of AW;
ΣΑ := ΣΑ ∪ {AW};
Freq[PrevW,AW] := 1;
Freq[PrevW,Escape] := Freq[PrevW,Escape] + 1;

else
output AW by arithmetic coding;
Freq[PrevW,AW] := Freq[PrevW,AW] + 1;

endif
PrevW := AW;

until end of input;

- 8 -

3.4 First-Order Context Modelling by Part-of-Speech

If we assume that the source text contains natural language, the sequence of words in the
source should obey the rules of grammar for that language. For example, one possible
form for an English language sentence is:

Subject Verb Object

where theSubject and theObject may be constructed as anArticle followed by aNoun.
The rules of grammar strongly influence the probabilities of certain words appearing in
certain contexts. For example, after the word ‘the’ (an article), we would not expect to find
another occurrence of an article or a verb, but we could find a noun or an adjective there.
(However, the existence of a music group named ‘The The’ reminds us that we should not
assume a zero probability for any combination of words, no matter how strange it seems.)

We therefore propose that a state-based model [1] be used for modelling the source
text and be used for generating the prediction probabilities used by an arithmetic coding
subroutine. For simplicity, we assume that there are just five parts of speech namedArti-
cle, Noun, Adjective, Verb andOther. (We include pronouns such as ‘she’ and ‘him’ in the
Noun category.) This yields a state diagram like the following:

Each state provides a set of probability estimates for the symbols inΣA. If the current state
is Article and the next symbol is the word ‘funny’, we would use the probability estimates
associated with theArticle state to encode the word ‘funny’. Then we would make a tran-
sition to theAdjective state, since that is the part of speecf for the word ‘funny’.

Implementation of this state-based model requires that we know or can determine
the parts of speech for all the symbols inΣA. This requires that the compression algorithm
be supplied with an initial vocabulary that specifies the appropriate part of speech for
words in the vocabulary. (Presumably some heuristics, such as deciding that a word end-
ing with the letters ‘ly’ is probably an adverb could also be useful.) But it is unreasonable
to require every word that might appear in any document to be included in the initial
vocabulary. Therefore, we need a mechanism for inferring an appropriate part of speech
for a new word after an occurrence in the text.

The first time a word occurs, and the word is not contained in the vocabulary, we
should assign that word the part of speech that is most likely to follow the part of speech
for the preceding word. Subsequently, we keep statistics on how well that word fits into its
assigned part of speech. For example, if the new word is W, we keep track of how effi-
ciently those words that immediately follow subsequent occurrences of W would be
encoded if W were assigned to the Noun class, to the Adjective class, and so on. If better
compression would have been achieved with W in a different class, W is dynamically re-

Article

AdjectiveNoun

Verb Other

- 9 -

assigned to that other class. The decoding algorithm performs the same calculations and
can therefore perform the same re-assignments. The overall structure of the compression
algorithm is therefore as shown in Figure 4. For simplicity, punctuation strings are ignored
in the presentation of the algorithm – they should be encoded by some other means.

4 Experimental Results and Discussion

The four word-based algorithms described in this paper have been implemented and tested
on several text files, using the UNIXcompress program as a benchmark. The compression
results are summarized in Table 1.The pair of numbers shown for the state-based context
compression reflects the fact that the algorithm normally requires initialization with a
vocabulary giving the parts of speech for words. In our experiments, the initial vocabulary
contained all the words used in the first test document (thecsh manual description). The
upper number in each pair shows compression performance when that vocabulary is used;
the lower number shows performance whenno vocabulary at all is used. I.e., the algorithm
simply assigns words to one of five classes as it seems to find appropriate.

The overall result is that performance is consistently better than our benchmark,
the UNIX compress program, no matter which word-based method is used. Words appar-
ently recur sufficiently often in the test files that any scheme for compressing repeated ref-
erences to words will perform well. The compression scheme using a state model based on
parts of speech in the English language has probably the most potential for improvement.
The current crude scheme could be improved by monitoring the punctuation to check for a
period (or other characters that terminate a sentence) and be used to reset the model state
to the start of a new sentence. At present, two strings with different capitalization (e.g.
‘the’ and ‘The’) are treated as two different words, but they could be combined into a sin-

Figure 4 Arithmetic Coding with State-Based Context Model

PW := any common symbol in ΣΑ; (* PW = Previous Word *)
State := PartOfSpeech[PW];
repeat

read next word AW;
if AW ∉ ΣΑ then

output code for Escape and output text of AW;
ΣΑ := ΣΑ ∪ {AW};
Freq[State,Escape] := Freq[State,Escape] + 1;
Freq[State,AW] := 1;
PartOfSpeech[AW] := most probable for a successor of State;

else
output code for AW;
Freq[State,AW] := Freq[State,AW] + 1;
for P := each possible state do

Cost[PW,P] := Cost[PW,P] - logarithm of the probability
predicted for word AW by state P;

PartOfSpeech[PW] := P such that Cost[PW,P] is a minimum;
endif
PW := AW; State := PartOfSpeech[AW];

until end of input;

- 10 -

gle entry and the end-of-sentence test could predict which form to use. The words ‘A’ and
‘An’ could be segregated into separate article classes and thus predict words that start with
vowels or consonants. Word suffixes, such as ‘ly’, could be used to make better guesses as
to a new word’s part of speech, etc. Much further experimentation is required. For now,
we recommend use of a simple and fast word-based algorithm for text file compression.
And of the possibilities considered, word-based LZW would seem to be the closest fit.

Acknowledgements

We are grateful to Kenny Wong for programming the word-based Adaptive Huffman cod-
ing algorithm whose results are reported here. We also thank the Natural Science and
Engineering Research Council of Canada for their financial support.

References
[1] Bell, T.C., Cleary, J.G., and Witten, I.H.Text Compression. Prentice-Hall , 1990.

[2] Bentley, J.L., Sleator, D.D., Tarjan, R.E., and Wei, V.K. “A Locally Adaptive Data
Compression Scheme.” CACM 29, 4 (April 1986), pp. 320-330.

[3] Cormack, G.V., and Horspool, R.N. “Algorithms for Adaptive Huffman Codes.” Inf.
Processing Letters 18, 3 (March 1983), pp. 159-166.

[4] Gallager, R.G. “Variations on a Theme by Huffman.” IEEE Trans. on Inf. Theory, IT-
24, 6 (Nov. 1978), pp. 668-674.

[5] Horspool, R.N., and Cormack, G.V. “A General-Purpose Data Compression Tech-
nique with Practical Applications.” Proc. of CIPS Session ’84 (Calgary, Alberta),
1984, pp. 138-141.

[6] Horspool, R.N., and Cormack, G.V. “Technical Correspondence on ‘A Locally
Adaptive Data Compression Scheme’.” CACM 30, 9 (Sept. 1987), pp. 792-794.

[7] Welch, T.A. “A Technique for High-Performance Data Compression.” IEEE Com-
puter 17, 6 (June 1984), pp. 8-19.

Table 1 Comparative Compression Performance

Original
Size

in bytes

Relative Size After Compression

UNIX
compress

WB-Adpt
Huffman

WB-LZW
State-
Based

WB-First
Order

On-line manual
page forcsh

66772 40.4% 29.8% 34.3 21.6%
29.3%

29.0%

On-line manual
page formake

63761 42.7% 34.7% 35.8% 29.5%
33.6%

31.7%

LaTeX file 83106 44.7% 36.1% 32.0% 36.0%
35.2%

33.7%

C Source File 24706 39.2% 28.5% 26.4% 32.3%
27.0%

25.3%

