Algorithms and Data Structures I

- Algorithm analysis techniques
- Basic data structures
- Searching
- Sorting
- Algorithm design techniques
- Graphs
- Weighted graphs
Algorithm analysis techniques

• Analysis methodologies
 - pseudo code, counting primitives, worst cases, ...

• Asymptotic notations
 - big/little-Oh, big/little-Omega, big-Theta
 - definitions and properties

• Mathematical tools
 - summations, log/exp identities, ...

• Justification techniques
 - (counter)example, contrapositive, induction, invariant,...

• Amortized analysis
Basic data structures

• Data structures
 - motivation, examples, applications
 - interface: ADT methods
 - implementation: design and analysis

• Basic data structures
 - stacks, queues, vectors, lists, sequences, ...
 - trees, tree traversals, binary trees, ...
 - priority queues, heaps, selection/insertion/heap-sort, ...
 - dictionaries, hash tables, hash collision, ...
Searching

• Searching in basic data structures
 − motivation, examples, applications

• Binary search trees
 − binary search tree properties
 − searching, insertion, removal
 − performance analysis

• AVL trees (balanced trees)
 − AVL tree properties
 − searching, insertion, removal
 − performance analysis
Sorting

• Merge-sort
 – divide-recur-conquer
• Set ADT
• Quick-sort
 – randomized quick-sort
• Sorting: a lower bound
 – comparison-based sorting
• Bucket-sort and radix sort
• Selection
Algorithm design techniques

• Greedy method: why greed works?
 − fractional knapsack
 − task scheduling
 − Dijkstra shortest-path tree

• Divide-and-conquer
 − recurrence equations
 − master theorem

• Dynamic programming: why not divide/conquer
 − 0-1 knapsack
 − Floyd-Warshall
Graphs

• Graph ADT
 – motivation, examples, applications
 – interface: Graph ADT
 – implementation: design and analysis
 • node, edge, adjacency

• Graph traversal
 – DFS, BFS

• Directed graph (digraph)
 – digraph traversal, transitive closure, DAG
Weighted graphs

• Motivation, examples, applications
• Single-source shortest paths
 – Dijkstra: why/when it works and how
 – Bellman-Ford
 – DAG
• All-pairs shortest paths
• Minimum spanning tree
 – Prim-Jarnik
 – Kruskal
 – Baruvka
What's next?

• Computer Science is about Algorithms
• More Algorithms courses from UVic CS
 - CSC320: Foundations of Computer Science
 - CSC326: Algorithms and Data Structures II
 - CSC425: Analysis of Algorithms
 - CSC426: Computational Geometry
 - CSC428: Computational Biology Algorithms
• Topics courses:
 • Graph Algorithms
 • Randomized Algorithms
What's more?

• Systems courses from UVic CS
 – CSC360: Operating Systems
 – CSC361: Computer Networks
 • changed from CSC450
 – CSC460: Embedded/Real-Time Systems
 – CSC461: Multimedia Systems
 – CSC462: Distributed Systems
 – CSC463: Wireless Mobile Networks
 – CSC465: Advanced Communication Networks
 – CSC466: Advanced Computer Networks

http://www.csc.uvic.ca/courses/undergrad.html