
09/06/07 CSc 225 1

CSc 225CSc 225
Algorithms and Data Structures IAlgorithms and Data Structures I

Algorithm AnalysisAlgorithm Analysis

Jianping Pan

Fall 2007

09/06/07 CSc 225 2

What is an Algorithm?What is an Algorithm?

• An algorithm is a sequence of unambiguous instructions
for solving a problem for obtaining the desired output for
any legitimate input in a finite amount of time.

• An algorithm is a finite procedure, written in a fixed
symbolic vocabulary, governed by precise instructions,
moving in discrete steps, 1, 2, 3, …, whose execution
requires no insight, cleverness, intuition, intelligence, or
perspicuity, and that sooner or later comes to an end.

• The nonambiguity requirement is critical
• The range of inputs has to be carefully specified
• An algorithm can be implemented in several different ways
• Algorithms for the same problem can be based on very different ideas

and can solve the problem with very different speeds

slides adopted from Dr Muller's

09/06/07 CSc 225 3

Fundamental AlgorithmsFundamental Algorithms

• Selection (Linear Median)
• Quicksort, Heapsort
• Linear search, Hash search
• Tree traversals
• Graph traversals
• Depth first search, breadth first search

09/06/07 CSc 225 4

What is a Data Structure?What is a Data Structure?

• A data structure is a particular scheme for
organizing and accessing related data items

• The nature of the data elements is dictated
by the problem at hand

09/06/07 CSc 225 5

Fundamental Data StructuresFundamental Data Structures

• Primitive data types
 int, char, string, Boolean,

double
• Compound data types

 Arrays, records
 Combination thereof

• Records or structs
 Nested records or structs

• Arrays
 1-D arrays or vectors
 2-D arrays or tables
 n-D arrays

• Lists
 Linked lists, singly and

doubly linked lists, skip lists
 Stack, queues

• Trees
 Rooted trees and forests
 Ordered trees
 Binary trees and m-way trees
 AVL-trees
 Heaps
 Tries

• Graphs
 Directed and undirected graphs
 Weighted graphs
 Paths and cycles
 Representations: adjacency list,

adjacency matrix, doubly connected
edge list

• Sets
• Dictionaries
• Priority queues

09/06/07 CSc 225 6

Limitations of Experiments ResultsLimitations of Experiments Results

• The algorithm must be implemented
• Experiments can typically be done only on

a limited set of test inputs
• When is a set of test inputs representative?
• To compare two algorithms the experiments

must run on the same machine

Input Data Algorithm Output Data

running time

09/06/07 CSc 225 7

Algorithm Analysis Wish ListAlgorithm Analysis Wish List

• Take all possible inputs into account
• Compare the efficiency of two different

algorithms independent from computer and
implementation

• Analyze algorithm before starting
implementation

Input Data Algorithm Output Data

running time

09/06/07 CSc 225 8

Tools for Algorithm AnalysisTools for Algorithm Analysis

• Language for describing algorithms
pseudo-code

• Metric for measuring algorithm running time
primitive operations

• Most common approach for characterizing
running times
Worst-case analysis

09/06/07 CSc 225 9

Pseudo CodePseudo Code

• An algorithm is the procedural or step-by-
step solution of a problem

• The procedural solution can be at different
levels of abstraction

• Pseudo code• Machine code
• Assembly language
• C

• Pascal
• C++
• Java
• C#

09/06/07 CSc 225 10

Problem: Find the maximum valueProblem: Find the maximum value
in an array of in an array of nn numbers numbers

…
public int arrayMax(int[] A, int n) {
int currentMax = A[0];
for (int k = 1; k<n; k++) {
 if (currentMax < A[k]) {

 currentMax = A[k];
 }

 }
return currentMax;

}
…

09/06/07 CSc 225 11

Pseudo-code vs. Java codePseudo-code vs. Java code

currentMax ← A[0]

for k ← 1 to n-1 do

 if currentMax < A[k]
then

 currentMax ← A[k]

return currentMax

…
public int arrayMax(int[] A,

int n) {
int currentMax = A[0];
for (int i=1; i<n; i++) {
 if (currentMax < A[i]) {

 currentMax = A[i];
 }

 }
 return currentMax;
}

…

09/06/07 CSc 225 12

Problem: Find the maximum valueProblem: Find the maximum value
in an array of in an array of nn numbers numbers

Algorithm arrayMax(A,n):
Input: An array A storing n ≥ 1

integers
Output: The maximum element in A

currentMax ← A[0]
for k ← 1 to n-1 do

if currentMax < A[k] then
currentMax ← A[k]

return currentMax

09/06/07 CSc 225 13

Pseudo Code: ExpressionsPseudo Code: Expressions

• Assignment operator (←)
currentMax ← A[i]

• Equality relation (=)
currentMax = A[i]
is true if currentMax and A[i] have the

same value, otherwise false.

• Smaller than (<), greater than (>), smaller
or equal to (≤), greater or equal to (≥)

09/06/07 CSc 225 14

Pseudo Code: Method declarationsPseudo Code: Method declarations

• Algorithm name(param1, param2,…)

Algorithm arrayMax(A,n)

09/06/07 CSc 225 15

Pseudo Code: Decision structuresPseudo Code: Decision structures

• if condition then
true-actions

[else
false-actions]

end

• if currentMax < A[k] then
currentMax ← A[k]

end

09/06/07 CSc 225 16

Pseudo Code: While loopsPseudo Code: While loops

• while condition do
actions

 end

• while currentMax < A[k] do
 count ← 2*count
 i ← k+1

 end

09/06/07 CSc 225 17

Pseudo Code: Repeat loopsPseudo Code: Repeat loops

• repeat
actions

until condition

• repeat
 i ← k+1
 count ← 2*count

 until currentMax < A[i]

09/06/07 CSc 225 18

Pseudo Code: For loopsPseudo Code: For loops

• for step-definition do
actions

 end

• for k ← 1 to n-1 do
 if currentMax < A[k] then
 currentMax ← A[k]

end
 end

09/06/07 CSc 225 19

Pseudo Code: Array indexingPseudo Code: Array indexing
and record field selectionand record field selection

• A[k] represents the kth cell in array A,
indexed from A[0] to A[n−1].

• r.key represents the field key in record or
struct r

09/06/07 CSc 225 20

Pseudo Code: Method calls and return statementsPseudo Code: Method calls and return statements

• Method call
object.method(args)
Example: arrayMax(X,13)

• Return statement
return value

09/06/07 CSc 225 21

What is the running timeWhat is the running time
of this algorithm?of this algorithm?

Algorithm arrayMax(A,n):
Input: An array A storing n ≥ 1

integers.
Output: The maximum element in A.

currentMax ← A[0]
for k ← 1 to n-1 do

if currentMax < A[k] then
currentMax ← A[k]

return currentMax

09/06/07 CSc 225 22

Primitive OperationsPrimitive Operations

• Assignments (A)
• Comparisons (C)
• Boolean expressions (B)
• Array indexing (I)
• Record selector or object reference (R)
• Arithmetic operations

Add, subtract (S)
Multiplication, division (D)

• Trigonometric operations (e.g., sin, cos, tan) (T)
• Calling a method, function, procedure, routine (M)

09/06/07 CSc 225 23

Algorithm analysisAlgorithm analysis

Categories of algorithm running times

• Best case analysis Tb(n)

• Average-case analysis Ta(n)

• Worst-case analysis T(n)

Input Data Algorithm Output Data

running time

09/06/07 CSc 225 24

Best-case, Average-caseBest-case, Average-case
and Worst-case Analysisand Worst-case Analysis

Time
[ms]

Run instances

Worst-case time

Best-case time

Average-case time?

09/06/07 CSc 225 25

Determining the Average-case TimeDetermining the Average-case Time

• Calculate expected running times based on
a given input distribution

• Typically the analysis requires heavy math
and probability theory

09/06/07 CSc 225 26

Determining the Best-caseDetermining the Best-case
and Worst-case Running Timeand Worst-case Running Time

• Worst-case T(n)
What is the maximum number of primitive operations

(depending on n) executed by the algorithm, taken over
all inputs of size n?

Worst-case analysis is most common and may aid in the
design of the algorithm (e.g., Linear Median algorithm)

• Best-case Tb(n)
What is the minimum number of primitive operations

(depending on n) executed by the algorithm, given the
most advantageous or best input configuration of size n?

09/06/07 CSc 225 27

Worst Case Running Time T(n)Worst Case Running Time T(n)
Counting Assignments, Comparisons, & IndexingCounting Assignments, Comparisons, & Indexing

currentMax ← A[0]

for k ← 1 to n-1 do

 if currentMax < A[k] then
 currentMax ← A[k]

end
end
return currentMax

• How has the input to be arranged to produce the
best case and the worst case?

Worst case
• 1 A + 1 I +
• 1 A + (N-1)*{

 1 A + 1 S +
 1 C +
 1 C + 1 I +
 1 A + 1 I +

• }
• 1 C (to

terminate loop)
+

• 1 A
T(n) = 5+(n-1)*7
T(n) = 7n - 2

Worst Case Running Time T(n)
Counting Assignments, Comparisons & Indexing

09/06/07 CSc 225 28

Structure of a Recursive AlgorithmStructure of a Recursive Algorithm

Algorithm recursiveAlgorithm(n)
 if n = 1 then
 base-case
else
 induction-step

 recursiveAlgorithm(n-1)
end

• Let the worst case running time of
recursiveAlgorithm be T(n)

• Then T n ={
c1 if n=1

T n−1+c2 otherwise }

09/06/07 CSc 225 29

Structure of a Recursive AlgorithmStructure of a Recursive Algorithm

Algorithm recursiveMax(A,n):
Input: An array A storing n ≥ 1 integers.
Output: The maximum element in A.

if n = 1 then return A[0] end
return max(recursiveMax(A,n−1),A[n−1])

• Base case: 3 operations (n=1, A[0], return)

• Induction step: T(n-1)+7 ops (n=1, A, n-1, n-1,A[n-1], call, max)

T n ={ 3 if n= 1
T n−17 otherwise } Recurrence Equation

09/06/07 CSc 225 30

Solving Recurrence EquationSolving Recurrence Equation
by Repeated Substitutionby Repeated Substitution

T n =T n−17
T n−1 =T n−2 7
T n−2 =T n−3 7
. ..
T 2 =T 1 7
T 1 =3

T 1=3
T 2 =37=10
T 3=377=17
T 4 =3777=24
. . .
T n =37 n−1
T n =37 n−1
T n =7n−4
T n ∈O n

T n =c1 +c2 n−1
T n ∈O n

09/06/07 CSc 225 31

This lecture

• Algorithm analysis
– writing pseudo code
– counting primitive operations
– analyzing worst/average/best cases

• Explore further
– arrayMax average case analysis

• assume the maximum is uniformly distributed

09/06/07 CSc 225 32

Next lecture

• Asymptotic notation
– read AD Chapter 1

