CSc 225
 Algorithms and Data Structures I Asymptotic Notations

Jianping Pan
Fall 2007

Feedback on A0

Office hours (now official)

- M 3:30-4:30pm, R 1:30-2:30pm
"Is textbook required?" Yes
"How much programming do we do?"
- programming helps us to understand algorithms
- Midterm/final coverage
- lectures, tutorials, assignments, required textbook reading - Assignments due time
- by the end of university business hours, i.e., 4:30pm
"Cannot hear/understand/cope"
- if I am not clear or go too fast in class, alert me!
- Bioinformatics, AI, ... (and many algorithmic topics)
- advanced algorithms courses in 3/4-year requiring csc225

Review

if currentMax $<A[k]$ then
currentMax $\leftarrow A[k]$

end

return currentMax

- How has the input to be arranged to produce the best case and the worst case?

Worst case

- $1 \mathrm{~A}+1 \mathrm{I}+$

$1 \mathrm{~A}+(\mathrm{N}-1)^{*}\{$	
$>1 \mathrm{~A}+1 \mathrm{~S}+$	
$>1 \mathrm{C}+$	
$\gg \mathrm{C}+1 \mathrm{I}+$	
	$>1 \mathrm{~A}+1 \mathrm{I}+$

- \}
- 1 C (to terminate loop)
- 1 A
$\mathrm{T}(\mathrm{n})=5+(\mathrm{n}-1)^{*} 7$
$\mathrm{T}(\mathrm{n})=7 \mathrm{n}-2$

Today's topics

- Asymptotic notations
- why asymptotic analysis
- "In mathematics and applications, particularly the. analysis of algorithms, real analysis and engineering, asymptotic analysis,,1s'a method of describing limiting behaviour.
- why are we concerned about big input size?
- Big-Oh
- definition
- theorem
- Big-Omega, Big-Theta
- little-oh, little-omega
- Special guests 3:10pm today!

Asymptotic Notation

- Evaluating running time in detail as for arrayMax and recursiveMax is cumbersome
- Fortunately, there are asymptotic notations which allow us to characterize the main factors affecting an algorithm's running time without going into detail
- A good notation for large inputs
- Big-Oh O(.)
- Big-Omega $\Omega($.
- Little-Oh o(.)
- Little-Omega $\omega($.)

Formal Definition of Big-Oh Notation

Let $f: I N \rightarrow R$ and $g: I N \rightarrow R . f(n)$ is $O(g(n))$ if and only if there exists a real constant $c>0$
 and an integer constant $n_{0}>0$ such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$.
 IN: non-negative integers IR: real numbers

- We say

$$
\begin{aligned}
& >f(n) \text { is order } g(n) \\
& >f(n) \text { is big-Oh of } g(n) \\
& >f(n) \in O(g(n))
\end{aligned}
$$

- Visually, this says that the

9/10/09

Big-Oh: Examples

- $\mathrm{f}(n)=4 n+20 n^{4}+117$ $\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(n)=1083$ $\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(n)=3 \log \mathrm{n}$ $\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(\mathrm{n})=3 \log \mathrm{n}+\log \log \mathrm{n}$ $\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(\mathrm{n})=2^{17}$
$\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(\mathrm{n})=33 / \mathrm{n}$ $\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(n)=2^{\log _{2} n}$ $\mathrm{O}(\mathrm{f}(n))$ is ?
- $\mathrm{f}(n)=1^{n}$
$\mathrm{O}(\mathrm{f}(n))$ is ?

Big-Oh: Examples

- $\mathrm{f}(n)=4 n+20 n^{4}+117$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}\left(n^{4}\right)$
$\mathrm{P}: 4 n+20 n^{4}+117 \leq 90 n^{4}$
- $\mathrm{f}(n)=1083$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(\mathbf{1})$
- $\mathrm{f}(n)=3 \log \mathrm{n}$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(\log \mathbf{n})$
P: $3 \log n \leq 4 \log n$
- $\mathrm{f}(\mathrm{n})=3 \log \mathrm{n}+\log \log \mathrm{n}$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(\log \mathbf{n})$
P: $3 \log n+\log \log n \leq 4 \log n$
- $\mathrm{f}(\mathrm{n})=2^{17}$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(\mathbf{1})$
P: $2^{17} \leq 12^{17}$
- $\mathrm{f}(\mathrm{n})=33 / \mathrm{n}$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(1 / n)$
P: $33 / \mathrm{n} \leq 33(1 / \mathrm{n})$ for $\mathrm{n} \geq 1$
- $\mathrm{f}(n)=2^{\log _{2} n}$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(n)$
P: $2^{\log _{2} n}=2$ by $\log \operatorname{def}$
- $\mathrm{f}(n)=1^{n}$
$\mathrm{O}(\mathrm{f}(n))$ is $\mathbf{O}(\mathbf{1})$
$\mathbf{P}^{\prime} 1^{n}=1$ by exponential def

Theorem

- R1: If $\mathrm{d}(\mathrm{n})$ is $\mathrm{O}(\mathrm{f}(\mathrm{n})$), then $\operatorname{ad}(\mathrm{n})$ is $\mathrm{O}(\mathrm{f}(\mathrm{n}))$, $\mathrm{a}>0$
- $\mathbf{R 2}$: If $d(n)$ is $O(f(n))$ and $e(n)$ is $O(g(n))$, then $d(n)+e(n)$ is $\mathrm{O}(\mathrm{f}(\mathrm{n})+\mathrm{g}(\mathrm{n}))$
- R3: If $d(n)$ is $O(f(n))$ and $e(n)$ is $O(g(n))$, then $d(n) e(n)$ is O(f(n)g(n))
- R4: If $d(n)$ is $O(f(n))$ and $f(n)$ is $O(g(n))$, then $d(n)$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- R5: If $f(n)=a_{0}+a_{1} n+\ldots+a_{d} n^{d}$, d and a_{k} are constants, then $\mathrm{f}(\mathrm{n}) \mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$
- R6: n^{x} is $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ for any fixed $\mathrm{x}>0$ and $\mathrm{a}>1$
- R7: $\log \mathrm{n}^{\times}$is $\mathrm{O}(\log \mathrm{n})$ for any fixed $\mathrm{x}>0$
- R8: $\log ^{x}{ }^{\mathrm{n}}$ is $\mathrm{O}\left(\mathrm{n}^{y}\right)$ for any fixed constants $\mathrm{x}>0$ and $\mathrm{y}>0$

Names of Most Common Big Oh Functions

- Constant O(1)
- Logarithmic O(log n)
- Linear O(n)
- Quadratic O(n^{2})
- Polynomial $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \mathrm{k}$ is a constant
- Exponential O(2n)
- Exponential $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ a is a constant and $\mathrm{a}>1$

Functions Ordered by Growth and Rate

n	$\log \mathrm{n}$	n	$\mathrm{n} \log \mathrm{n}$	n^{2}	n^{3}	2^{n}	$\mathrm{n}!$
10	3.3	10	33	10^{2}	10^{3}	10^{3}	10^{6}
10^{2}	6.6	10^{2}	6.610^{2}	10^{4}	10^{6}	10^{30}	10^{158}
10^{3}	10	10^{3}	1.010^{3}	10^{6}	10^{9}		
10^{4}	13	10^{4}	1.310^{4}	10^{8}	10^{12}		
10^{5}	17	10^{5}	1.710^{5}	10^{10}	10^{15}		
10^{6}	20	10^{6}	2.010^{6}	10^{12}	10^{18}		

Assume a computer executing 10^{12} operations per second.
To executive 2^{100} operations takes $4 \mathbf{1 0}^{10}$ years.
To executive 100! operations takes much longer still.

CSC 225—Spring 2007
Q: how about $2 * 10^{\wedge} 12$ ops?

L’Hôpital's Rule

$$
\lim _{n \rightarrow b} \frac{f_{1}(n)}{f_{2}(n)}=\lim _{n \rightarrow b} \frac{f_{1}^{\prime}(n)}{f_{2}^{\prime}(n)}=\left\{\begin{array}{l}
0, \text { then } f_{2}(n) \text { grows faster } \\
0<x<\infty, \text { then inconclusive } \\
\infty, \text { then } f_{1}(n) \text { grows faster }
\end{array}\right.
$$

Example
$f_{1}(n)=n^{2} \quad f_{1}^{\prime}(n)=2 n$
$f_{2}(n)=e^{n} \quad f_{2}^{\prime}(n)=e^{n}$

thus, $f_{2}(n)$ grows faster

Functions Ordered by Growth and Rate

- $\log n$
- $\log ^{2} n$
- \sqrt{n}
- $n \log n$
- n^{2}
- n^{3}
$\mathrm{P}=$ class of polynomial time algorithms
$\mathrm{NP}=$ class of nondeterministic polynomial time algorithms

Warning: $\mathrm{O}\left(n^{2}\right)$ can be "faster" than $\mathrm{O}(n)$ for small inputs

- $124 n>n^{2}$ for $n=1 . .123$
- $124 n=n^{2}$ for $n=124$
- $124 n<n^{2}$ for $n>124$

Big-Oh Rules

- If is $f(\boldsymbol{n})$ a polynomial of degree \boldsymbol{d}, then $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{i}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
" Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Big-Omega Notation

Let $\mathrm{f}: \mathrm{IN} \rightarrow \mathrm{IR}$ and $\mathrm{g}: \mathrm{IN} \rightarrow \mathrm{IR}$. $f(n)$ is $\Omega(g(n))$
 if and only if $g(n)$ is $O(f(n))$

IN: non-negative integers
IR: real numbers

Big-Theta Notation

$$
\begin{aligned}
& \text { Let } f: \text { IN } \rightarrow \text { IR and } g: \text { IN } \rightarrow \text { IR. } \\
& f(n) \text { is } \Theta(g(n)) \\
& \text { if and only if } \\
& f(n) \text { is } O(g(n)) \text { and } f(n) \text { is } \Omega(g(n)) .
\end{aligned}
$$

Intuition of Asymptotic Terminology

- Big-Oh: $\mathrm{O}(g(n))$ upper bound; functions that grow no faster than $g(n)$
- Big-Omega: $\Omega(g(n))$ lower bound; functions that grow at least as fast than $g(n)$
- Big-Theta: $\Theta(g(n))$ asymptotic equivalence; functions that grow at the same rate as $\mathrm{g}(\mathrm{n})$

$\Omega(\mathbf{g}(\mathbf{n}))$
 $\Theta O(g(n))$

Little-Oh Notation

Let $f: I N \rightarrow I R$ and $g: I N \rightarrow I R$.
 $f(n)$ is $o(g(n))$
 if and only if

for any constant $c>0$ there is a constant $n_{0}>0$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_{0}$.

Little-Omega Notation

Let $f: I N \rightarrow I R$ and $g: I N \rightarrow I R$.
$f(n)$ is $\omega(g(n))$
if and only if $g(n)$ is $o(f(n))$.

Intuition of Asymptotic Terminology

- Big-Oh: upper bound
- Big-Omega: lower bound
- Big-Theta: asymptotic equivalence
- Little-Oh: less than (in asymptotic sense). The bound is not asymptotically tight.
- Little-Omega: greater than (in asymptotic sense).

The bound is not asymptotically tight.

This lecture

- Asymptotic notations
- why asymptotic notations
- Big-Oh
- $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$
- Big-Omega, Big-Theta
- little-oh, little-omega
- Explore further
$-n!$ is $\mathrm{O}\left(2^{n}\right)$?
-2^{n} is $\mathrm{O}(n!)$?

Next lecture

- Case studies
- read AD Chapter 1

