
9/10/07 CSc 225 1

CSc 225
Algorithms and Data Structures I

Asymptotic Notations

Jianping Pan

Fall 2007

9/10/07 CSc 225 2

Feedback on A0
• Office hours (now official)

– M 3:30-4:30pm, R 1:30-2:30pm
• “Is textbook required?” Yes
• “How much programming do we do?”

– programming helps us to understand algorithms
• Midterm/final coverage

– lectures, tutorials, assignments, required textbook reading
• Assignments due time

– by the end of university business hours, i.e., 4:30pm
• “Cannot hear/understand/cope”

– if I am not clear or go too fast in class, alert me!
• Bioinformatics, AI, ... (and many algorithmic topics)

– advanced algorithms courses in 3/4-year requiring csc225

9/10/07 CSc 225 3

Worst Case Running Time T(n)
Counting Assignments, Comparisons, & Indexing

currentMax ← A[0]

for k ← 1 to n-1 do

 if currentMax < A[k] then
 currentMax ← A[k]

end
end
return currentMax

• How has the input to be arranged to produce the
best case and the worst case?

Worst case
• 1 A + 1 I +
• 1 A + (N-1)*{

 1 A + 1 S +
 1 C +
 1 C + 1 I +
 1 A + 1 I +

• }
• 1 C (to

terminate loop)
+

• 1 A
T(n) = 5+(n-1)*7
T(n) = 7n - 2

Review

Q: average T(n)?

9/10/07 CSc 225 4

Today's topics

• Asymptotic notations
– why asymptotic analysis

• “In mathematics and applications, particularly the
analysis of algorithms, real analysis, and engineering,
asymptotic analysis is a method of describing
limiting behaviour.”

• why are we concerned about big input size?
– Big-Oh

• definition
• theorem

– Big-Omega, Big-Theta
• little-oh, little-omega

• Special guests 3:10pm today!

9/10/07 CSc 225 5

Asymptotic Notation

• Big-Oh O(.)Big-Oh O(.)

• Big-Omega Ω(.)

• Big-Theta Θ(.)

• Little-Oh o(.)

• Little-Omega ω(.)

• Evaluating running time in detail as for arrayMax and
recursiveMax is cumbersome

• Fortunately, there are asymptotic notations which allow us
to characterize the main factors affecting an algorithm’s
running time without going into detail

• A good notation for large inputs

slides adopted from Dr Muller's

9/10/07 CSc 225 6

Let f: IN→R and g: IN→R. f(n) is O(g(n)) if and only if
there exists a real constant c > 0

and an integer constant n0 > 0
such that f(n) ≤ c·g(n) for all n ≥ n0.

IN: non-negative integers
IR: real numbers

• We say
 f(n) is order g(n)
 f(n) is big-Oh of g(n)

• Visually, this says that the
f(n) curve must eventually fit
under the cg(n) curve.

Formal Definition of Big-Oh Notation

f n ∈O g n

9/10/07 CSc 225 7

Big-Oh: Examples

• f(n) = 4n + 20n4 + 117
O(f(n)) is ?

• f(n) = 1083
O(f(n)) is ?

• f(n) = 3log n
O(f(n)) is ?

• f(n) = 3log n + log log n
O(f(n)) is ?

• f(n) = 217

O(f(n)) is ?
• f(n) = 33/n

O(f(n)) is ?
• f(n) = 2log2n

O(f(n)) is ?
• f(n) = 1n

O(f(n)) is ?

9/10/07 CSc 225 8

Big-Oh: Examples

• f(n) = 4n + 20n4 + 117
O(f(n)) is O(O(nn44))
P: P: 4n + 20n4 + 117 ≤ 90n4

• f(n) = 1083
O(f(n)) is O(1)O(1)

• f(n) = 3 log n
O(f(n)) is O(log n)O(log n)
P: P: 3 log n ≤ 4 log n

• f(n) = 3log n + log log n
O(f(n)) is O(log n)O(log n)
P: P: 3log n + log log n ≤ 4 log n

• f(n) = 217

O(f(n)) is O(1)O(1)
P: P: 217 ≤ 1 217

• f(n) = 33/n
O(f(n)) is O(1/O(1/nn))
P: P: 33/n ≤ 33(1/n) for n≥1

• f(n) = 2log2n
O(f(n)) is O(O(nn))
P: P: 2log2n = 2 by log def

• f(n) = 1n
O(f(n)) is O(1)O(1)
P: P: 1n = 1 by exponential def

prove by definition

9/10/07 CSc 225 9

Theorem

• R1: R1: If d(n) is O(f(n)), then ad(n) is O(f(n)), a > 0
• R2: R2: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)+e(n) is

O(f(n)+g(n))
• R3: R3: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is

O(f(n)g(n))
• R4: R4: If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is

O(g(n))
• R5: R5: If f(n) = a0 + a1n + … + adnd, d and ak are constants,

then f(n) O(nd)
• R6: R6: nx is O(an) for any fixed x > 0 and a > 1
• R7: R7: log nx is O(log n) for any fixed x > 0
• R8: R8: log xn is O(ny) for any fixed constants x > 0 and y > 0

prove by using theorem

9/10/07 CSc 225 10

Names of Most Common Big Oh Functions

• Constant O(1)
• Logarithmic O(log n)
• Linear O(n)
• Quadratic O(n2)
• Polynomial O(nk) k is a constant

• Exponential O(2n)
• Exponential O(an) a is a constant and a > 1

CSC 225—Spring 2007 11

Functions Ordered by Growth
and Rate

101810122.0 10610620106

101510101.7 10510517105

10121081.3 10410413104

1091061.0 10310310103

1015810301061046.6 1021026.6102

10610310310233103.310

n!2nn3n2n log nnlog nn

Assume a computer executing 1012 operations per second.
To executive 2100 operations takes 4 1010 years.
To executive 100! operations takes much longer still.

Q: how about 2*10^12 ops?

CSC 225—Spring 2007 12

L’Hôpital’s Rule

f'(x)

g'(x)

lim
n b

f 1 n

f 2n
=lim

n b

f 1
'
n

f 2
'
 n

={
0, then f 2 n grows faster
0x∞ , then inconclusive
∞ , then f 1 n grows faster

Example
f 1 n =n2 f 1

'
n =2n

f 2 n =en f 2
'
n = en

lim
n b

n2

en
=lim

n b

2n

en
=lim

n b

2

en
=lim

nb

0

en
=0

thus, f 2n grows faster

CSC 225—Spring 2007 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3. 6 8. 11 13 16 18 21 23

f(n)=log n

CSC 225—Spring 2007 14

0

5

10

15

20

25

30

1 3. 6 8. 11 13 16 18 21 23

f(n)=log n
f(n)=n

CSC 225—Spring 2007 15

0

5

10

15

20

25

30

1 4 7 10 13 16 19

f(n)=log n
f(n)=n
f(n)=n log n

CSC 225—Spring 2007 16

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19

f(n)=log n
f(n)=n
f(n)=n log n
f(n)=n^2

CSC 225—Spring 2007 17

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 7 10 13 16 19

f(n)=log n
f(n)=n
f(n)=n log n
f(n)=n^2
f(n)=n^3

CSC 225—Spring 2007 18

0

10000

20000

30000

40000

50000

60000

1 3 5 7 9 11 13 15

f(n)=log n
f(n)=n
f(n)=n log n
f(n)=n^2
f(n)=n^3
f(n)=n^4

CSC 225—Spring 2007 19

0

10000

20000

30000

40000

50000

60000

1 3 5 7 9 11 13 15

f(n)=log n
f(n)=n
f(n)=n log n
f(n)=n^2
f(n)=n^3
f(n)=n^4
f(n)=2^n

CSC 225—Spring 2007 20

0

200000

400000

600000

800000

1000000

1200000

1 4 7 10 13 16 19

f(n)=log n
f(n)=n
f(n)=n log n
f(n)=n^2
f(n)=n^3
f(n)=n^4
f(n)=2^n

CSC 225—Spring 2007 21

Functions Ordered by Growth
and Rate

• log n
• log2 n
•
• n
• n log n
• n2

• n3

• 2n

 n
P = class of polynomial time algorithms

NP = class of nondeterministic
 polynomial time algorithms

CSC 225—Spring 2007 22

Warning: O(n2) can be “faster” than O(n)
for small inputs

• 124n > n2 for n = 1..123
• 124n = n2 for n = 124
• 124n < n2 for n > 124

124

n2

124n

CSC 225—Spring 2007 23

Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

• Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

9/10/07 CSc 225 24

Big-Omega Notation

Let f: IN→IR and g: IN→IR.

f(n) is Ω(g(n))

if and only if

g(n) is O(f(n))

IN: non-negative integers
IR: real numbers

9/10/07 CSc 225 25

Big-Theta Notation

Let f: IN→IR and g: IN→IR.

f(n) is Θ(g(n))

if and only if

f(n) is O(g(n)) and f(n) is Ω(g(n)).

9/10/07 CSc 225 26

Intuition of Asymptotic
Terminology

• Big-Oh: O(g(n)) upper bound; functions that
grow no faster than g(n)

• Big-Omega: Ω(g(n)) lower bound; functions
that grow at least as fast than g(n)

• Big-Theta: Θ(g(n)) asymptotic equivalence;
functions that grow at the same rate as g(n)

ΩΩ(g(n))(g(n)) O(g(n))O(g(n))Θ

9/10/07 CSc 225 27

Little-Oh Notation

Let f: IN→IR and g: IN→IR.

f(n) is o(g(n))

if and only if

for any constant c > 0 there is a constant n0 > 0
such that f(n) ≤ c·g(n) for n ≥ n0.

9/10/07 CSc 225 28

Little-Omega Notation

Let f: IN→IR and g: IN→IR.

f(n) is ω(g(n))

if and only if

 g(n) is o(f(n)).

9/10/07 CSc 225 29

Intuition of Asymptotic
Terminology

• Big-Oh: upper bound
• Big-Omega: lower bound
• Big-Theta: asymptotic equivalence
• Little-Oh: less than (in asymptotic sense).

 The bound is not asymptotically tight.
• Little-Omega: greater than (in asymptotic sense).

 The bound is not asymptotically tight.

9/10/07 CSc 225 30

This lecture

• Asymptotic notations
– why asymptotic notations
– Big-Oh

• f(n) ≤ c·g(n) for all n ≥ n0

– Big-Omega, Big-Theta
• little-oh, little-omega

• Explore further
– n! is O(2n)?
– 2n is O(n!)?

9/10/07 CSc 225 31

Next lecture

• Case studies
– read AD Chapter 1

