
9/12/07 CSc 225 1

CSc 225
Algorithms and Data Structures I

Case Studies

Jianping Pan

Fall 2007

9/12/07 CSc 225 2

Things we have so far

• Algorithm analysis
– pseudo code
– primitive operations
– worst-case scenarios

• Asymptotic notations
– Big-Oh

9/12/07 CSc 225 3

Find an Algorithm to solve
Prefix Averages Problem

• Prefix Averages
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that

A[k] is the average of elements X[0], …, X[k]

7.48.51011.57.37.512A

114247312X

9/12/07 CSc 225 4

Algorithm PrefixAverages

Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[k] is

the average of elements X[0], …, X[k]

Let A be an array of n numbers.
for k←0 to n-1 do
a←0
for j←0 to k do
a←a+X[j]
end
A[k]←a/(k+1)

end
return A

k + 1 times

1 + 2 + 3 + … + n = ?

9/12/07 CSc 225 5

Worst-Case Running Time of
Algorithm PrefixAverages

123 .. .+n=

∑
i=1

n

k=
1
2

n n+1 is O n2

9/12/07 CSc 225 6

Algorithm PrefixAverages2

Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that

A[k] is the average of elements X[0], …, X[k]

Let A be an array of n numbers.
s←0
for k←0 to n−1 do
s←s+X[k]
A[k]← s/(k+1)

end
return A

n times O(n)

9/12/07 CSc 225 7

PrefixAverages vs.
PrefixAverages2

• PrefixAverages runs in quadratic time O(n2)
• PrefixAverages2 runs in linear time O(n)

• Thus, PrefixAverages2 is more efficient!
• The analysis drove the design of

PrefixAverages2 to a certain extent

9/12/07 CSc 225 8

Correctness of Algorithms

• One an algorithm has been properly specified, one
can prove its correctness.

• That is the algorithm yields a required result for
every legitimate input in a finite amount of time
(i.e., it halts with the correct output).
For some algorithms, a correctness proof is easy to
obtain; for others it is very complex

• Mathematical induction is a common approach in
proofing correctness

• Tracing the performance as in computing
asymptotic complexity does not proof correctness

9/12/07 CSc 225 9

Optimality

• When is an algorithm optimal with respect to efficiency,
complexity of implementation, maintainability,
modifiability, extensibility, etc.?

• There are tradeoffs among all these criteria when
implementing an algorithm

• Efficiency: What is the minimum amount of effort any
algorithm will need to solve the given problem?

• For some problems we know the answer
– Sorting Ω(n log n)
– Searching Ω(1)
– Selection Ω(n)

9/12/07 CSc 225 10

Implementing an Algorithm

• Most algorithms are eventually implemented as computer
programs written in a programming language (e.g., coding
in Java, C++, C#)

• In the transition from pseudo-code to code, correctness,
efficiency and ease of understanding may be lost

• Formal verification is limited to small programs
• The validity of an implementation of an algorithm is

established by testing
• Program testing can be used very effectively to show the

presence of bugs but never to show their absence.
 E.W. Dijkstra, EWD 303

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD303.html

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD303.html

9/12/07 CSc 225 11

How can we prove correctness of
an algorithm? (Read Section

1.3.3)

• Using standard proof techniques like

– Induction

– Contra attack

– Counterexample

– Loop invariants

9/12/07 CSc 225 12

Running time of recursiveMax

Algorithm recursiveMax(A,n):
Input: An array A storing n≥1
integers.
Output: The maximum element in A.

if n = 1 then
return A[0]
return max{recursiveMax(A,n−1),
A[n−1]}

if n = 1

and running time of
recursiveMax(A, n−1) if n > 1

+

9/12/07 CSc 225 13

Running time of recursiveMax

T n ={3 if n=1
T n−19 otherwise}

9/12/07 CSc 225 14

Running time of recursiveMax for large n

T(n) = T(n−1) + 9
 = T(n−2) + 9 + 9 = T(n−2) + 2•9
 = T(n−3) + 9 + 2•9 = T(n−3) + 3•9

 •

 •

 •

 = T(n−i) + 9 + (i−1)•9 = T(n−i) + i•9

We know: T(n − i) = 3 iff n − i = 1 iff n − 1 = i.

Thus T(n) = T(n − i) + i•9 = T(n − (n − 1)) + (n − 1)9
= T(1) + 9n − 9 = 3 + 9n − 9 = 9n − 6

9/12/07 CSc 225 15

Correctness of recursiveMax

Algorithm recursiveMax(A,n):
Input: An array A storing n≥1
integers.
Output: The maximum element in A.

if n = 1 then
return A[0]
return max{recursiveMax(A,n−1),
A[n−1]}

Base step: n = 1
A[0] is the only element and
therefore the maximum.

Proof by induction on the number of elements in the array.

Hypothesis: recursiveMax is correct for n (i.e., recursiveMax(A,
n − 1) returns the maximum element of the first n elements in A.)

9/12/07 CSc 225 16

Correctness of recursiveMax

Algorithm recursiveMax(A,n):
Input: An array A storing n≥1
integers.
Output: The maximum element in A.

if n = 1 then
return A[0] end
return max{recursiveMax(A,n−1),
A[n−1]}

Base step: n = 1
A[0] is the only element and
therefore the maximum.

Proof by induction on the number of elements in the array.

Induction step: Show recursiveMax is correct for n + 1.
max{recursiveMax(A,n), A[n]}

9/12/07 CSc 225 17

This lecture
• Algorithm analysis case studies

– correctiveness
– performance

• asymptotic analysis
• Explore further

9/12/07 CSc 225 18

Next lecture
• Data structures

– read AD Chapter 2

