
Assignment #11

CSC 360: Operating Systems (Fall 2007)2

Start Date: September 10, 2007
Due Date (Deliverable 1): September 24, 2007
Due Date (Deliverable 2): October 5, 2007

3

1 Introduction4

In this assignment you will implement a remote shell program.5

Deliverable 1 The basic shell will be similar to the Unix shell bash: It will support foreground execution6

of programs, the ability to change directories, and background execution.7

Deliverable 2 The shell must also be able to function as a server: it should be able to accept commands8

sent to it from a client shell.9

You may implement your solution in C or C++. Your solution will be tested on linux.csc.uvic.ca.10

11

Note: linux.csc.uvic.ca is a particular machine at the UVic Department of Computer Science. It12

does not mean “any Linux machine” at UVic. Even more importantly, it does not mean any “Unix-like”13

machine, such as a Mac OS X machine—many students have developed their programs for their Mac OS X14

laptops only to find that their code works differently on linux.csc.uvic.ca resulting in a substantial loss15

of marks.16

You have been warned.17

Be sure to study the man pages for the various systems calls and functions suggested in this assignment.18

These functions are in Section 2 of the man pages, so you should type (for example):19

$ man 2 waitpid20

2 Requirements for Deliverable 121

2.1 Basic Execution (5 marks)22

Your shell shows the prompt23

shell>24

for user input.25

Using fork() and execvp(), implement the ability for the user to execute arbitrary commands using26

your shell program.27

For example, if the user types:28

shell> ls -l /usr/bin29

1



your shell should run the ls program with the parameters -l and /usr/bin — which should list the contents30

of the /usr/bin directory on the screen.31

32

Note: The example above uses 2 arguments. We will, however, test your shell by invoking programs33

that take more than 2 arguments.34

A well-written shell should support as many arguments as given on the command-line.35

2.2 Changing Directories (5 marks)36

Using the functions getcwd() and chdir(), add functionality so that users can:37

• change the current working directory using the command cd38

• print the current working directory using the command pwd39

The cd command should take exactly one argument — the name of the directory to change into. The40

special argument .. indicates that the current directory should “move up” by one directory.41

That is, if the current directory is /home/djp/subdir and the user types:42

cd ..43

the current working directory will become /home/djp.44

The pwd command takes no arguments.45

46

Note: There is a program named pwd. Do not use fork() and execvp() to execute it. You are required47

to use the system call getcwd().48

2.3 Background Execution (5 Marks)49

Many shells allow programs to be started in the background – that is, the program is running, but the shell50

continues to accept input from the user.51

You will implement a simplified version of background processing that supports a fixed number of pro-52

cesses (in this case, 5) executing in the background.53

If the user types: bg cat foo.txt your shell will start the command cat with the argument foo.txt in54

the background. That is, the program will execute and the shell will also continue to execute.55

The command bglist will display a listing of all the commands currently executing in the background,56

similar to:57

0: /home/djp/a1/foo58

1: /home/djp/a1/foo59

Total Background jobs: 260

In this case, there are 2 background jobs, both running the program foo.61

In your shell:62

1. The command bgkill n will send the TERM signal to job n to terminate that job.63

2. The command bgstop n will send the STOP signal to job n to stop (temporarily) that job.64

3. The command bgstart n will send the CONT signal to job n to re-start that job (which has been65

previously stopped).66

See the man page for the kill() system call for details.67

Your shell must indicate to the user when background jobs have terminated. Read the man page for the68

waitpid() system call. I suggest using the WNOHANG option.69

2



3 Requirements for Deliverable 2 (10 marks)70

You will modify your shell to work as a remote shell. Essentially, the program written for deliverable 171

will be modified into two parts—a server shell which executes commands, and a client shell which sends72

commands to the servers shell. Communication between the client shell and the server shell will be done via73

the “sockets” library.74

Sockets are a form of ipc (InterProcesss Communication) provided by the unix operating system. A75

socket is one end-point of a connection between two processes. Hence, each connection has two sockets:76

1. A “client” socket: which initiated the connection.77

2. A “server” socket: which accepted the connection.78

Each socket typically has a “name” consisting of a ip address and a 16-bit port number.79

Much more information will be given in the tutorial—so please attend.80

3.1 Invocation81

The shell must accept a single command line parameter:82

--server, which instructs the shell to act as a server which waits for the client to send a command and then83

executes it, on behalf of the client. This “wait-get-execute” sequence is performed repeatedly until the84

command exit is received, at which point the server process terminates.85

--client, which instructs the shell to acts as a client, which simply sends the commands typed by the user86

(at the keyboard) to the server shell.87

Note: The shell server is only required to support one shell client.88

3.2 Server Requirements89

The C library/kernel function calls that you will need to create a server process are:90

socket, to create a “server” socket—a socket which is capable of accepting connections.91

gethostbyname, which is used to obtain the ip address of a named host.92

bind, which binds an ip address to a server-socket.93

listen, which configures a server-socket to listen for connections.94

accept, which accepts a connection attempt made by a client, and returns a file description. This file95

description can be read with functions such as read, write, and (with a little massaging) fread and96

fwrite. Essentially, after an accept function, reading from and writing to a socket is no different than97

from/to a file.98

When a server receives a command (typically via fgets) it will:99

1. Perform the command exactly as if the user had entered the command locally at the keyboard.100

2. Write the messages (that it would write to the screen), back to the client via the socket connection.101

3. Write the message END OF MESSAGE back to the client.102

Note: The output of any programs invoked does not have to be captured and sent back to the client.103

3



3.3 Client Requirements104

The C library/kernel function calls that you will need to create a client process are:105

socket, to create a “client” socket—a socket which is capable of making connections.106

gethostbyname, which is used to obtain the ip address of a named host—the remote host which you want107

to connect to.108

connect, which connects the client-socket to the named host.109

When a client receives a command (typed at the keyboard) it will:110

1. Send the command to the server via the socket interface.111

2. Print all messages sent from the server until the message END OF MESSAGE is received.112

4 Bonus Features113

Only a simple shell with limited functionality is required in this assignment. However, students have the114

option to extend their design and implementation to include more features in a regular/remote shell (e.g.,115

handling many clients at the same time, capturing and redirecting remote program output, etc).116

If you want to design and implement a bonus feature, you should contact the course instructor for permis-117

sion before the due date of Deliverable 1, and clearly indicate the feature in the submission of Deliverable 2.118

The credit for correctly implemented bonus features will not exceed 20% of the full marks for this assignment.119

5 Odds and Ends120

5.1 Compilation121

You’ve been provided with a Makefile that builds the sample code. It takes care of linking-in the GNU122

readline library for you. (The sample code shows you how to use readline() to get input from the user.)123

5.2 Submission124

Submit a tar archive named assign1.tar of your assignment using the automated submission program at125

http://www.csc.uvic.ca/∼submit/index.cgi126

You can create a tar archive of the current directory by typing:127

tar cvf assign1.tar *128

Please do not submit .o files or executable files (.out) files. Erase them before creating the archive.129

5.3 Helper Programs130

5.3.1 inf.c131

This program takes two parameters:132

tag: a single word which is printed repeatedly133

interval: the interval, in seconds, between two printings of the tag134

4

http://www.csc.uvic.ca/~submit/index.cgi


The purpose of this program is to help you with debugging background processes. It acts a trivial background135

process, whose presence can be “felt” since it prints a tag (specified by you) every few seconds (as specified136

by you). This program takes a tag so that even when multiple instances of it are executing, you can tell the137

difference between each instance.138

This program considerably simplifies the programming of the part of your shell which deals with re-139

starting, stopping, and killing programs.140

5.3.2 args.c141

This is a very trivial program which prints out a list of all arguments passed to it.142

This program is provided so that you can verify that your shell passes all arguments supplied on the143

command line — Often, people have off-by-1 errors in their code and pass one argument less.144

5.4 Code Quality145

We cannot specify completely the coding style that we would like to see but it includes the following:146

1. Proper decomposition of a program into subroutines — A 500 line program as a single routine won’t147

suffice.148

2. Comment — judiciously, but not profusely. Comments serve to help a marker. To further elaborate:149

(a) Your favourite quote from Star Wars or Douglas Adams’ Hitch-hiker’s Guide to the Galaxy does150

not count as comments. In fact, they simply count as anti-comments, and will result in a loss of151

marks.152

(b) Comment your code in English. It is the official language of this university.153

3. Proper variable names — leia is not a good variable name, it never was and never will be.154

4. Small number of global variables, if any. Most programs need a very small number of global variables,155

if any. (If you have a global variable named temp, think again.)156

5. The return values from all system calls listed in the assignment specification should be157

checked and all values should be dealt with appropriately.158

If you are in doubt about how to write good C code, you can easily find many C style guides on the Net.159

The Indian Hill Style Guide is an excellent short style guide.160

5.5 Plagiarism161

This assignment is to be done individually. You are encouraged to discuss the design of your solution with162

your classmates, but each person must implement their own assignment.163

Your markers will submit the code to an automated plagiarism detection program. We add164

archived solutions from previous semesters (a few years worth) to the plagiarism detector, in165

order to catch “recycled” solutions.166

167

The End168

5

http://www.chris-lott.org/resources/cstyle/
http://www.chris-lott.org/resources/cstyle/indhill-annot.html

	Introduction
	Requirements for Deliverable 1
	Basic Execution (5 marks)
	Changing Directories (5 marks)
	Background Execution (5 Marks)

	Requirements for Deliverable 2 (10 marks)
	Invocation
	Server Requirements
	Client Requirements

	Bonus Features
	Odds and Ends
	Compilation
	Submission
	Helper Programs
	blueinf.c
	blueargs.c

	Code Quality
	Plagiarism


