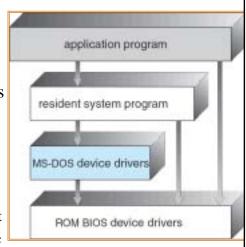
CSc 360 Operating Systems OS Structures

Jianping Pan Summer 2006

5/10/06 CSc 360

OS design and implementation

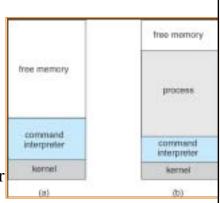
- An art of balance
 - hardware vs software
 - efficiency vs flexibility
 - user vs system
 - convenience vs effectiveness
- General design guidelines
 - separation of mechanisms and policies
- Best current practices


5/10/06 CSc 360 2

Simple structure

- E.g., MS-DOS
 - single user
 - almost single process
 - direct access
 - almost flat memory
 - MZ linked list
 - executables

5/10/06


• .COM: segment limit • .EXE: MZ file magic

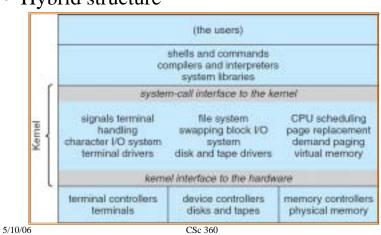
MS-DOS

- Load program
 - "shrink" interpreter
 - make room for program
- Execute program
 - access to everywhere
 - even "kernel"/interpreter
- Reload interpreter back
 - otherwise, "cannot find command.com..."

CSc 360 5/10/06 4

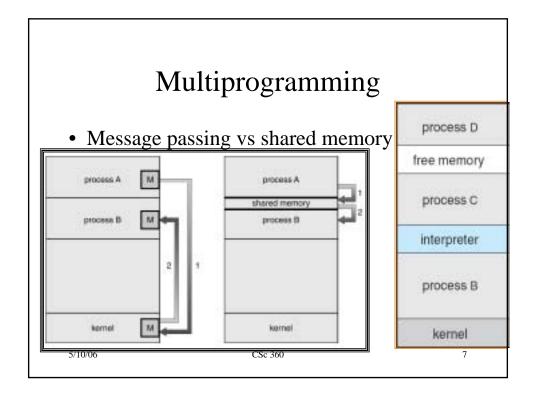
Layered structure

- Layers
 - L₀: hardware
 - L_N: user interface
 - L_i: anything in btw
 - use L_{i-1} service
 - offer service to L_{i+1}
- Divide & conquer
- Cross-layer issues

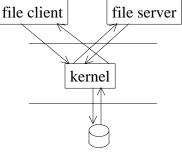

Isyer 1 layer 0 hantware

layer N user intertoce

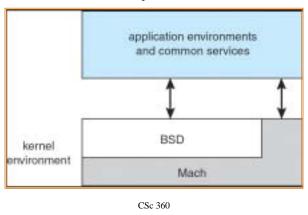
5/10/06 CSc 360


Unix

• Hybrid structure


3

6


Micro-kernel structure

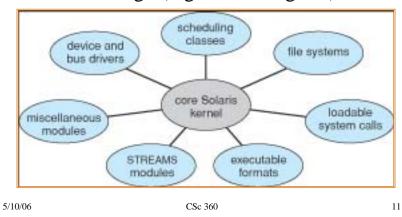
- E.g.
 - Mach
- Smaller kernel
 - only those "essentials"
 - e.g., handle hardware
- More by system/application programs
 - message passing
- Overhead between kernel and user spaces 5/10/06

Mac OS X

• Mach (CPU,memory) + BSD (file,network)

Modular structure

• Object-oriented methodology


5/10/06

- not necessary implemented in OO languages
- popular choices for modern OS, e.g., Linux
- e.g., insmod fat|vfat|msdos
- On-demand, loadable kernel modules
 - each module is a separate function/support
 - communicate through know kernel interface
 - module dependency

5/10/06 CSc 360 10

SunOS Solaris

• Modular design (high-level diagram)

This lecture

- OS structures
 - design and implementation tradeoffs
 - user requirement
 - hardware support
 - layered, micro-kernel, modular
 - pros and cons
- Explore further
 - which OS structures are good for embedded
 system, I/O or computation-intensive system?

6

Next lecture

- Virtual machines vs real machines
 - machine virtualization
 - from power-on to login
 - read OSC7 Chapter 2 (or OSC6 Chapter 3)

5/10/06 CSc 360 13