Computer Science 360
Summer 2006
Assignment 1 — Shell
Due May 26" 2005

Introduction

In this assignment you will implement a simple shell program similar to the Unix shell
bash or the command prompt in Windows.

The shell will support execution of programs, the ability to change directories and
background execution.

You may implement your solution in C or C++. You solution must run on the machine

linux.csc.uvic.ca.

Be sure to study the man pages for the various functions suggested in this assignment.
The functions are in section 2 of the man pages, so you should type (for example):

$ man 2 waitpid
Requirements

Part I — Basic execution (5 marks)

Using f or k() and execvp() implement the ability for the user to execute arbitrary
commands using your shell.

For example, if the user types:
shell>1s -1 /usr/bin
Your shell should execute the | S command with the parameters - | and/ usr/ bi n,

which should result in the contents of the directory / usr/ bi n being displayed on the
screen.

Part IT — Changing Directories (5 marks)

Using the functions get cwd() and chdi r () add functionality so that users can change
directories using the command cd, and print the current working directory using the
command pwd.

The cd command should take one argument that is the directory to change into. The
special parameter . . indicates that the current directory should move “up” one directory.
That is, if the current directory is / home/ j ason/ f 00 and the user types cd . . the
new directory will be / hone/ j ason

The pwd command takes no parameters.

Part III — Background Execution (5 marks)

Many shells allow programs to be started in the background — that is, the program is run
but the shell continues to accept input from the user.

You will implement a simplified version of background processing that supports a fixed
number (in this case 5) of processes executing in the background.

If the user types: bg cat fo0o0. t xt your shell will start the command cat with the
argument f 00. t Xt in the background. That is, the program will execute and the shell
will also continue to execute.

The command bgl i st will display a listing of all the commands currently executing in
the background, similar to:

0: /hone/jason/all/foo
1. /hone/jason/allfoo
Total Background jobs: 2

In this case, there are 2 background jobs, both running the program f 00.

The command bgki | | 1 will send the TERM signal to job 1 to terminate that job. See
the man page for the ki I | () system call for details.

Your shell must indicate to the user when background jobs have terminated. Read the
man page for the wai t pi d() system call. I suggest using the WNOHANG option.

The GNU Readline Library

We could use the simple get s to get input from the user, but instead we are going to use
the GNU Readline Library. This library allows the user to edit their command line using
the standard bash function keys. For example:

- the arrow keys move forwards and backwards

— control-A moves to the front of the line

- control-E moves to the end of the line

- control-K erases the rest of the line

— pressing the TAB key will perform filename completion

The sample code shows how to use the library. The library supports many more options
(including command line history) but you are not responsible for those features.

Note: The Readline library allocates memory for the line entered by the user. It is up to
the caller (you) to free the memory.

Compilation

You've been provided with a Makefile that builds the sample code. It takes care of
linking in the GNU Readline library for you.

Submission

Submit a gzipped tar archive named assign].tar.gz of your assignment using the

automated submission program at: http://www.csc.uvic.ca/~submit/index.cgi

You can create a gzipped tar archive of the current directory by typing:

tar zcvf assignl.tar.gz *

Please do not submit .o or executable files. Erase them before creating the tar archive.

Note

This assignment is to be done individually. You are encouraged to discuss the design of
the solution with your classmates, but each student must implement their own

assignment. The markers will submit your code to an automated plagiarism detection

service.

