
Computer Science 360
Summer 2006

Assignment 2 - Thread
Due June 21st 2006

Introduction

In this assignment you will learn to use three programming constructs provided by the
POSIX pthread library: threads, mutexes and condition variables.

Your goal is to construct a simulation of an automated control system for a single lane
bridge. You will use threads to simulate trains approaching the bridge from two different
directions. Your software will ensure (among other things) that there is never more than
one train on the bridge at any given time.

You may implement your solution in C or C++. You solution must run on the machine
linux.csc.uvic.ca.

Manual Pages

Be sure to study the man pages for the various functions contained in the assignment.
For example, the man page for pthread_create can be found by typing:

$ man pthread_create

At the end of this assignment you should be familiar with the following functions:

atoi
fopen
fclose
fgetc or fgets

pthread_create
pthread_join

pthread_mutex_lock
pthread_mutex_unlock
pthread_mutex_init

pthread_cond_wait
pthread_cond_init
pthread_cond_broadcast

It is absolutely critical that you read the man pages. The assignment specification
does not discuss details of these functions. Your best source of information is the man
page.

Trains

Each train will be simulated by a thread and the operation of each thread is defined by the
function shown below.

void * Train (void *arguments)
{

TrainInfo *train = (TrainInfo *)arguments;

/* Sleep for awhile to simulate different arrival times */
usleep (train->length*SLEEP_MULTIPLE);

ArriveBridge (train);
CrossBridge (train);
LeaveBridge (train);

free (train);
return NULL;

}

You are responsible for implementing the functions ArriveBridge and
LeaveBridge. The code for CrossBridge has been supplied.

The sample code supplied performs all output that is expected in the final solution. You
may want to introduce additional output during debugging. See the sample code for an
example of using conditional compilation to only produce output when debugging.

Step 1

Your program accepts two parameters on the command line. The first one is required;
the second one is optional.

The first parameter is an integer, greater than 0, which is the number of trains to simulate.

The second parameter is optional: a filename to use as input data for the simulation. The
format of the file is shown below.

You may assume:
− The file always contains data for at least the number of trains specified in the

first parameter.
− During our testing the file specified on the command line will exist, and it

will contain valid data.

If the second parameter is not specified (no filename is given) your program will
randomly generate trains for the simulation. (This code is already given to you.)

Complete the implementation of train.c so that it correctly reads the input files.

Step 2

Complete the implementation of ArriveBridge and LeaveBridge so that the following
conditions hold for the bridge:

− only one train is on the bridge at any given time

− trains do not overtake each other, trains cross the bridge in the order they
arrive (subject to the requirement below)

− trains headed East have priority over trains going West
− if there are trains waiting headed both East and West then two of the

East bound trains should be allowed to cross for every West bound
train allowed to cross.

Input file format

The input files have a simple format. Each line contains information about a single train.
The files end with a blank line.

The first character on each line is one of the following four characters: 'e', 'E', 'w', or 'W'

The first two letters specify a train that is going East, the second two letters specify a
train headed West.

Immediately following the letter specifying the direction is an integer that indicates the
length of the train. There is no space between the direction character and the length.

The following file specifies three trains, two headed East and one headed West.

E10
w6
E3

Compilation

You've been provided with a Makefile that builds the sample code. It will produce an
executable named assign2

Submission

Submit a gzipped tar archive named assign2.tar.gz of your assignment using the
automated submission program at: http://www.csc.uvic.ca/~submit/index.cgi

You can create a gzipped tar archive of the current directory by typing:

tar zcvf assign2.tar.gz *

You should submit all the files required to create your solution (including the
Makefile and any .c and .h files.)

Please do not submit .o or executable files. Erase them before creating the tar archive.

IMPORTANT: Please include a README file in your tar ball, indicating your real
name and student number.

Note

This assignment is to be done individually. You are encouraged to discuss the design of
the solution with your classmates, but each student must implement their own
assignment. The markers will submit your code to an automated plagiarism detection
service.

http://www.csc.uvic.ca/~submit/index.cgi

