
Computer Science 360
Summer 2006

Assignment 4 - FAT
Due: July 31, 2006

Introduction
In this assignment you will implement utilities that perform operations on a file system similar to
Microsoft's FAT file system.

Sample File Systems
You have been given a sample file system image named disk.img.

You should get comfortable examining the raw data in the file system images using the program xxd.

For example, you could type:

% xxd disk.img | head

to see the superblock of the filesytem contained in disk.img.

Part I – 5 marks
In part I, you will write a program that displays information about the file system. In order to complete
part I, you will need to read the file system super block and use the information in the super block to
read in the FAT.

Your program for part I will be invoked as follows:

./diskinfo disk1.img

Sample output:

Super block information:
Block size: 512
Block count: 5120
FAT starts: 1
FAT blocks: 40
Root directory start: 41
Root directory blocks: 8

FAT information:
Free Blocks: 5071
Reserved Blocks: 41
Allocated Blocks: 8

Please be sure to use the exact same output format as shown above.

Part II – 5 marks

In part II, you will write a program that displays the contents of the root directory in the file system.

Your program for part II will be invoked as follows:

./disklist disk1.img

The first column will contain an F for regular files and a D for directories, followed by a single space.
Next you will use 10 characters to show the file size, followed by a single space and then 30 characters
for the file name, followed by a single space, followed by the file modification date (we won't display
the file creation date).

For example:

F 735 mkfile.cc 2005/11/15 12:00:00
F 2560 foo.txt 2005/11/15 12:00:00

Part III – 5 Marks

In part III you will write a program that copies a file from the file system to the current directory in
Unix. If the specified file is not found in the root directory of the file system, you should output the
message “File not found.” on a single line and exit.

Your program for part III will be invoked as follows:

./diskget disk1.img foo.txt

File System Specification

The file system has 3 major components: the super block, the File Allocation Table (FAT) and the
directory structure.

Each of these 3 components is describe in the sections below.

File system Superblock

The first block (512 bytes) is reserved to contain information about the file system. The layout of the
superblock is as follows:

Description Size Default Value
File system identifier 8 bytes CSC360FS
Block Size 2 bytes 0x200
File system size (in blocks) 4 bytes 0x00001400
Block where FAT starts 4 bytes 0x00000001
Number of blocks in FAT 4 bytes 0x00000028
Block where root directory starts 4 bytes 0x00000029
Number of blocks in root dir 4 bytes 0x00000008

Directory Entries

Each directory entry takes up 64 bytes, which implies there are 8 directory entries per 512 byte block.

Each directory entry has the following structure:

Description Size
Status 1 byte
Starting Block 4 bytes
Number of Blocks 4 bytes
File Size (in bytes) 4 bytes
Create Time 7 bytes
Modify Time 7 bytes
File Name 31 bytes
unused (set to 0xFF) 6 bytes

Status

This is bit mask that is used to describe the status of the file. Currently only 3 of the bits are used.

Bit 0 - set to 0 if this directory entry is available, set to 1 if it is in use
Bit 1 – set to 1 if this entry is a normal file
Bit 2 – set to 1 if this entry is a directory

It is implied that only one of bit 2 or bit 1 can be set to 1. That is, an entry is either a normal file or it is
a directory, not both.

Starting Block

This is the location on disk of the first block in the file

Number of Blocks

The total number of blocks in this file

File Size

The size of the file, in bytes. The size of this field implies that the largest file we can support is 2^32
bytes long.

Create Time

The date and time when this file was created.

The file system stores the times as integer values in the format:

YYYYMMDDHHMMSS

2 bytes used to store YYYY
1 byte to store MM
1 byte to store DD
1 byte to store HH
1 byte to store MM
1 byte to store SS

Modify Time

The last time this file was modified. Stored in the same format as the Create Time shown above.

File Name

The file name, null terminated. Because of the null terminator, the maximum length of any filename is
30 bytes.

Valid characters are upper and lower case letters (a-z, A-Z), digits (0-9) and the underscore character
‘_’ and the period ‘.’.

File Allocation Table (FAT)

Each directory entry contains the starting block number for a file, let’s say it is block X. To find the
next block in the file, you should look at entry X in the FAT. If the value you find there does not
indicate End-of-File (see below) then that value, call it Y, is the next block in the file.

That is, if the first block is block X, you look in the FAT table at position X and find the value Y. The
second data block is block Y. Then you look in the FAT at position Y to find the next data block...
continue this until you find the special value in the FAT indicating that you are at the end of the file.

The FAT is really just a linked list, which the head of the list being stored in the directory entry, and
the 'next pointers' being stored in the FAT.

Fat entries are 4 bytes long (32 bits), which implies there are 128 FAT entries per block.

Special values for FAT entries are:

Value Meaning
0x00000000 This block is available
0x00000001 This block is reserved
0x00000002 – 0xFFFFFF00 Allocated blocks as part of files
0xFFFFFFFF This is the last block in a file

Byte Ordering

Different hardware architectures store multi-byte data (like integers) in different orders. Consider the
large integer: 0xDEADBEEF

On the Intel architecture (Little Endian), it would be stored in memory as:

EF BE AD DE

On the PowerPC (Big Endian), it would be stored in memory as:

DE AD BE EF

Our file system will use Big Endian for storage. This will make debugging the file system by
examining the raw data much easier.

This will mean that you have to convert all your integer values to Big Endian before writing them to
disk. There are utility functions in netinet/in.h that do exactly that. (When sending data over the
network, it is expected the data be in Big Endian format.)

See the functions htons, htonl, ntohs and ntohl.

The benefit of using these functions will be that your code will work on multiple platforms. (On
machines that natively store integers in Big Endian format, like the Mac with PowerPC, the above
functions don't actually do anything – but you should still use them!)

What to hand in
You need to hand in a gzipped .tar.gz file containing all your source code and a Makefile that
produces the executables for parts 1 – 3.

Please include a readme.txt file that indicates your real name and student number, and explains
whether you have implemented bonus features and to what extent.

Bonus – 3 Marks
For bonus, you will write a program that copies a file from the current Unix directory into the file
system, with correctly updated FDT and FAT. If the specified file is not found, you should output the
message “File not found.” on a single line and exit.

Your program for the bonus will be invoked as follows:

./diskput disk1.img foo.txt

	Summer 2006
	Due: July 31, 2006
	Introduction
	Sample File Systems
	Part I – 5 marks
	Part II – 5 marks
	Part III – 5 Marks
	File System Specification
	File system Superblock
	Directory Entries
	Status
	Starting Block
	Number of Blocks
	File Size
	Create Time
	Modify Time
	File Name

	File Allocation Table (FAT)
	Byte Ordering
	What to hand in
	Bonus – 3 Marks

