
1

6/15/06 CSc 360 1

CSc 360
Operating Systems

Process Synchronization

Jianping Pan
Summer 2006

6/15/06 CSc 360 2

Review

• Race condition
– concurrent access to shared data: inconsistency

• dependent on the order of execution at CPU level!

• Critical section
– where shared data are accessed

• Mutual exclusion
– pthread_mutex_lock(), pthread_mutex_unlock()
– how is mutual exclusion implemented indeed?

2

6/15/06 CSc 360 3

Properties of “solutions”

• Mutual exclusion
– no more than one process in the critical section

• Making process
– if no process in the critical section, one can in

• Bounded waiting
– for processes that want to get in the critical

section, their waiting time is bounded

6/15/06 CSc 360 4

Problem formulation
• Only 2 processes, P0 and P1
• General structure of process Pi (other process Pj)

do {
entry section

critical section

exit section
remainder section

} while (1);

• Processes may share some common variables to
synchronize their actions
– do not get into loop!

3

6/15/06 CSc 360 5

Algorithm 1
• Shared variables

– int turn;
initially turn = 0

– turn == i ⇒ Pi can enter its critical section
• Process Pi

do {
while (turn != i) ;
critical section

turn = j;
remainder section

} while (1);

• Fate on other’s hands: any problems?

6/15/06 CSc 360 6

Algorithm 2
• Shared variables

– boolean flag[2];
initially flag [0] = flag [1] = false.

– flag [i] = true ⇒ Pi ready to enter its critical section

• Process Pi
do {

flag[i] := true;
while (flag[j]) ;

critical section

flag [i] = false;

remainder section

} while (1);

• Fight for access: any problems?

4

6/15/06 CSc 360 7

Dekker’s solution
• Combined shared variables of Algorithms 1 and 2
• Process Pi

• Be polite: meet all three requirements; solve the
critical-section problem for two processes

while (true) {
 flag[i] = true;
 while (flag[j]) {
 if (turn == j) {
 flag[i] = false;
 while (turn == j) { }
 flag[i] = true;
 }
 /* critical section */
 turn = j;
 flag[i] = false;
 }
}

6/15/06 CSc 360 8

Peterson’s solution
• A simpler solution

– combined shared variables of Algorithms 1 and 2
• Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn == j) ;

 /* critical section */
flag [i] = false;

/* remainder section */
} while (1);

• Meet all three requirements; solve the critical-
section problem for two processes

5

6/15/06 CSc 360 9

This lecture

• Process synchronization
– software solution for 2 processes

• Peterson’s solution

• Explore further
– Lamport’s bakery algorithm

• for n processes
• it’s time to google!

6/15/06 CSc 360 10

Next lecture

• Process synchronization
– other alternatives (read OSC7Ch6)

