CSc 360
Operating Systems
Deadlocks

Jianping Pan
Summer 2006

6/22/06 CSc 360

Review

« Ways to process synchronization
— hardware-assisted solutions
— semaphores
— monitors
» Required properties
— mutual exclusion
— making progress (i.e., no deadlock)

— bounded waiting (i.e., no live-lock)
6/22/06 CSc 360

Dining philosophers: semaphores
* Shared data

— Initially all values are 1
senmaphore chopstick[5];

» Using semaphores, for Philosopher i:
do {
wai t (chopstick[i])
wai t (chopstick[(i+1) %5])

eat
si gnal (chopstick[i]):
si gnal (chopstick[(i+1) %5]);
t hi nk
} while (1):
6/22/06 CSc 360 3

Dining philosophers: monitors

monitor DP {

void test (int 1) {

if ((state[(i + 4) % 5] = EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) { . : :
state[i] = EATING ; Using monitors
selfli].signal () ; // no effect if not blocked))

} dp.pickup (i)
j
EAT
initialization _code() {
for (inti=0; i <5; i++) .
state[i] = THINKING; dp.putdown (1)
6/22/08 CSc 360 4

}

Deadlocks

» Deadlock can occur if all are true

—mutual exclusion
+ wait(chopstick[i]);
—hold-and-wait
+ wait(chopstick[i]); wait(chopstick[(i+1)%5]);
—no-preemption
» wait();
— circular-wait

* chopstick[(i+1)%5]
6/22/06 CSc 360 5

Visualization

62206 request edge CSe 360 assignment edge °

How about this?

* No directed cycle Directed cycle
— no deadlock — one instance per resource type
* deadlock
6/22/06 csc360 — otherwise 7
» maybe!

Handling deadlocks

* Prevention

— mutual exclusion

* only when mutual exclusion is really necessary
void test (int 1) {

— hold-and-wait if ((state[(i + 4) % 5] |= EATING) &&
(state[i] == HUNGRY) &&
¢ all-or-none (state[(1+ 1) % 5] != EATING)) {

state[i] = EATING ;

1 1f[1].signal () ;
— non-preemption selfli].signal () ;

* gjve up on request
g p q void pickup (int i) {

— circular-wait aatell] = HUNGRY;
) if (state[i] != EATING
* strictly ordered (seatell self[i]‘wait?

6/22/06 CSc360 | 8

Handling deadlocks: more

* Avoidance

— declare maximal resource usage in advance
* claim edge

— check against currently admitted processes

— admit if safe (e.g., no circular-wait)

* single instance resource: resource-allocation graph

* multi-instance resource: banker’s algorithm

 Detection and recovery

6/22/06 CSc 360 9

This lecture

* Deadlocks

— deadlock characteristics
— how to prevent deadlocks
— how to avoid deadlocks

» Explore further
— CSC 464: Concurrency
— NSERC USRA

» undergraduate student research awards!

6/22/06 CSc 360 10

