
1

6/22/06 CSc 360 1

CSc 360
Operating Systems

Deadlocks

Jianping Pan
Summer 2006

6/22/06 CSc 360 2

Review

• Ways to process synchronization
– hardware-assisted solutions
– semaphores
– monitors

• Required properties
– mutual exclusion
– making progress (i.e., no deadlock)
– bounded waiting (i.e., no live-lock)

2

6/22/06 CSc 360 3

Dining philosophers: semaphores
• Shared data

– Initially all values are 1
semaphore chopstick[5];

• Using semaphores, for Philosopher i:
do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])
 …
eat
 …

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
 …
think
 …

} while (1);

6/22/06 CSc 360 4

Dining philosophers: monitors
monitor DP {

…

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 self[i].signal () ; // no effect if not blocked
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

• Using monitors

 dp.pickup (i)
...

 EAT
...

 dp.putdown (i)

3

6/22/06 CSc 360 5

Deadlocks

• Deadlock can occur if all are true
– mutual exclusion

• wait(chopstick[i]);

– hold-and-wait
• wait(chopstick[i]); wait(chopstick[(i+1)%5]);

– no-preemption
• wait();

– circular-wait
• chopstick[(i+1)%5]

6/22/06 CSc 360 6

Visualization

c3

P1

P2

P3 P4

P5

c1c2

c4

c5

P1

P2

P3 P4

P5

c1c2

c4

c5
c3

request edge assignment edge

4

6/22/06 CSc 360 7

P1

P2

P3 P4

P5

c1c2

c4

c5
c3

P1

P2

P3 P4

P5

c1c2

c4

c5
c3

How about this?

• No directed cycle
– no deadlock

• Directed cycle
– one instance per resource type

• deadlock
– otherwise

• maybe!

6/22/06 CSc 360 8

Handling deadlocks

• Prevention
– mutual exclusion

• only when mutual exclusion is really necessary

– hold-and-wait
• all-or-none

– non-preemption
• give up on request

– circular-wait
• strictly ordered

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

self [i].wait;
}

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;

}
}

5

6/22/06 CSc 360 9

Handling deadlocks: more

• Avoidance
– declare maximal resource usage in advance

• claim edge

– check against currently admitted processes
– admit if safe (e.g., no circular-wait)

• single instance resource: resource-allocation graph
• multi-instance resource: banker’s algorithm

• Detection and recovery

6/22/06 CSc 360 10

This lecture

• Deadlocks
– deadlock characteristics
– how to prevent deadlocks
– how to avoid deadlocks

• Explore further
– CSC 464: Concurrency
– NSERC USRA

• undergraduate student research awards!

