
6/11/07 CSc 450/550 1

CSc 450/550
Computer Networks

Flow Control

Jianping Pan

Summer 2007



6/11/07 CSc 450/550 2

Review: TCP basics

• Services provided by TCP
– connection-oriented, reliable data transfer

• Services provided by IP
– connectionless, unreliable packet delivery

• TCP protocol mechanisms: to fill the gap
– last lecture: TCP connection management 

• connection establishment and release

– flow, error and congestion control



6/11/07 CSc 450/550 3

State machine

event/actionQ: simultaneous open/close?



6/11/07 CSc 450/550 4

Data transfer

• After connection establishment
• Data transfer: bidirectional in TCP

– reliable data transfer
• flow control
• error control
• congestion control

• Before connection release

app

sender receiver

app

write read

data

acknowledgment

Q: why SYN, FIN also take seqno?



6/11/07 CSc 450/550 5

TCP flow control

• Problem
– a fast sender to overflow a slow receiver

• the receiver has no buffer to hold incoming packets

• Approach
– let the receiver tell the sender how much to send

• window-based: the available space at the receiver
• or, rate-based: the sending rate allowed, e.g., ATM

– TCP: receiver window size (16-bit)
• advertised window size in bytes!

Q: byte vs packet sequence/window?



6/11/07 CSc 450/550 6

TCP packet header

Q: which packet has no ack no?



6/11/07 CSc 450/550 7

TCP receiver’s view

• Sequence space
– acknowledgment number

• the next continuous byte to receive from the sender

– receiver window
• available buffer space at receiver

sequence

to be read by 
application

to receive
from sender

total buffer space (receiver)

available buffer space

recv-ed but not ack-ed



6/11/07 CSc 450/550 8

Receiver: sliding window

receiver buffer size

window size

receiver

ackread by app

receiver buffer size

new window size

receiver

read by app ack

Q: events?

1

1

2 3 4 5

2 3 5



6/11/07 CSc 450/550 9

TCP sender’s view

• Sequence space
– sequence number

• the first byte sequence in the payload

– sender window
• min {receiver window, total buffer space}

receiver window

ack-ed

total buffer space (sender)

to send next
sent but not ack-ed

sequence



6/11/07 CSc 450/550 10

Sender: sliding window

sender buffer size

sender

ack

sender buffer size

sender

ack

send next

send next

51 2 3 4

54321

6 7

Q: events?



6/11/07 CSc 450/550 11

Sliding window-based flow control

• Window control
– sliding window

• acknowledgment

– variable window
• window size

• When win=0
– no data can be sent
– exception

• urgent data
• window probes to avoid deadlock



6/11/07 CSc 450/550 12

Sender: small packet problem

• Problem
– application keeps writing data byte-by-byte
– TCP sends many small data packets

• also trigger many acknowledgment packets

– high overhead

• John Nagle's algorithm
– send the first byte and wait for acknowledgment

• or send when an MSS worth of data accumulated

– send the rest bytes accumulated so far

Q: when Nagle's not preferred?

Q: TCP header length?



6/11/07 CSc 450/550 13

Nagle's algorithm

• Goal
– try to send big packets
– to lower packet header overhead 

• When Nagle's algorithm is not beneficial
– e.g., mouse movement in X-window

• mouse pointer stalls and jumps due to delayed update

– also, interaction with delayed acknowledgment
– to disable Nagle's algorithm through socket API

• setsockopt(..., ..., TCP_NODELAY, ..., ...);

Q: why delay acknowledgment?



6/11/07 CSc 450/550 14

Receiver: small packet problem
• Problem

– silly window syndrome: application keeps 
reading data byte-by-byte

– receiver keeps advertising small window
• sender has to send small packets

• David Clark's solution
– receiver only advertises

• at least one MSS, or
• half window size

– goal
• try to advertise big windows



6/11/07 CSc 450/550 15

Between sender and receiver

• Sending small packets are bad
– application always gives small write/read

• Sender's approach: Nagle's algorithm
– try to wait until a big packet can be sent

• Receiver's approach: Clark's solution
– try to wait until a big window can be advertised
– delayed acknowledgment

• piggyback acknowledgment packets with data packets

• Trade-off: extra delay



6/11/07 CSc 450/550 16

TCP window space

• Window space (16-bit)
– maximum window size 216-1: ~64K bytes!
– achievable throughput limit: ~ win/rtt
– keep the “pipe” full

• TCP over “long-fat” networks (LFN)
– long: large round-trip time
– fat: high bandwidth
– low utilization due to window limit

elephant network

rtt



6/11/07 CSc 450/550 17

TCP large window

• Extension: TCP large window
– TCP window scale option
– left shift up to 14 bit

• i.e., maximum window size 230-1: 1GB

• TCP sequence number space (32-bit)
– new data: within 231 from left window edge
– 2 * maximum window size <= 231 

Q: why not shift more?

sender
receiver 231



6/11/07 CSc 450/550 18

This lecture

• TCP flow control
– purpose
– mechanism

• sliding variable window: seqno, ackno, win

• Explore further
– TCP large window, PAWS with timestamp

• RFC1323: TCP extensions for high performance

– in tcpdump (or Ethereal)
• time sip:spt > dip:dpt: P 144:192 (48) ack 321 win 16022



6/11/07 CSc 450/550 19

Next lectures

• TCP error control
• TCP congestion control


