6/11/07

CSc 450/550

Computer Networks
Flow Control

Jianping Pan
Summer 2007

CSc 450/550

Review: TCP basics

* Services provided by TCP

— connection-oriented, reliable data transfer

* Services provided by IP

— connectionless, unreliable packet delivery

* TCP protocol mechanisms: to fill the gap
— last lecture: TCP connection management
* connection establishment and release

— flow, error and congestion control
6/11/07 CSc 450/550

State machine

-

(Step 2 ./ of the 3-way handshake)

L

SYN
RCVD

(Start)

o

CLOSE/FIN

CLOSE/FIN

(simultaneous open)

(Data transfer state)

ESTABLISHED

CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED [2 ~
- CLOSE/— I
1
LISTEN/~ ! | CLOSE/-
SYN/SYN + ACK !
""""""""""" LISTEN
RST/-) k SEND/SYN !
- SYN
SYN/SYN + ACK SEB

SYN + ACK/ACK

o

- ——— -

((Active close)
L FIN/ACK

(Step 3 of the 3-way handshake)

FIN/ACK

————————————————— -~

(Passive‘\. close)

] 1 : |
i : ! y l
! FIN = : | CLOSE |
I 1 : H I
i ACK/— ACK/~ i | | CLOSE/FIN!
| i ' H |
! i FIN + ACK/ACK l | ' l
i FIN - TIME i : LAACS}I i
- |

| WAIT 2 FIN/ACK WAIT | ! : :
i | | I :
e 4 ___________: __________ _

(Timeout/) '

1

7

Q: simultaneous open/close?

CLOSED |=---

(Go back to start)

event/action

Data transfer

* After connection establishment
* Data transfer: bidirectional in TCP

— reliable data transfer @ @

* flow control :
write read
* error control :
, sender receiver
* congestion control ‘ data
acknowledgment

* Before connection release

6/11/07 CSc 450/550 4

Q: why SYN, FIN also take seqno?

TCP tlow control

* Problem

— a fast sender to overflow a slow receiver
* the recerver has no buffer to hold incoming packets

* Approach

— let the receiver tell the sender how much to send
* window-based: the available space at the receiver
* or, rate-based: the sending rate allowed, e.g., ATM

— TCP: recerver window size (16-bit)

* advertised window size in bytes!
6/11/07 CSc 450/550

Q: byte vs packet sequence/wmdow‘?

TCP packet header

32 Bits

|
\ |

Source port Destination port

Sequence number

G Acknowledgement number >
TCP UIA|P|R|S|F
header R{C|S|S|Y]! Window size >
length G|K|H|T|N|N
Checksum Urgent pointer

Options (0 or more 32-bit words)

((
))
((
J)

= Data (optional) gy

6/11/07 CSc 450/550) 6
Q: which packet has no ack no?

TCP receiver’s view

* Sequence space

— acknowledgment number
* the next continuous byte to receive from the sender

— recerver window

* available buffer space at receiver

to be read by to receive
application from sender

l recv-ed but not ack-ed

|‘ Ll

available buffer space sequence

o

\ 4

total buffer space (receiver)
6/11/07 CSc 450/550 7

Receiver: sliding window

read by app ack

l)

receiver 1 2 3 5

window size

‘ receiver buffer size

read by app ac1|< new window size

| !

recelver 1 2 3 4 5

P |
- Lad

receiver buffer size

6/11/07 CSc 450/550 8
Q: events?

TCP sender’s view

* Sequence space

— sequence number
* the first byte sequence 1n the payload

— sender window
* min {receiver window, total buffer space}

ack-ed to send next
l sent but not ack-ed J'
receiver window | sequence

total buffer space (sender)
6/11/07 CSc 450/550 9

Sender: sliding window

send next

l

4

5

ack

l

sender buffer size

send next

l

2

3

5

6

7

ack
sender 1
sender 1
6/11/07

P
«

CSc 450/550

sender buffer size

10
Q: events?

Sliding window-based flow control

Sender Receiver Receiver's
Application buffer
doesa2K —» 0 4K

* Window control

— sliding window

2K
* acknowledgment

Application
doesa2K —

— variable window [[sEa=z0m,

Full

* window size

Sender is =0 Application
blocked 22096 W

o ACK = reads 2K

* When win=0 / —
pCH =

2K

— no data can be sentsener may

send up to 2K —

— exception

SEQ:
K| | 2K

* urgent data

* window probes to avoid deadlock
6/11/07 CSc 450/550 11

Sender: small packet problem

* Problem
— application keeps writing data byte-by-byte
— TCP sends many small data packets
* also trigger many acknowledgment packets

— high overhead Q: TCP header length?
* John Nagle's algorithm

— send the first byte and wait for acknowledgment
* or send when an MSS worth of data accumulated

— send the rest bytes accumulated so far
6/11/07 CSc 450/550 12

Q: when Nagle's not preferred?

Nagle's algorithm

* Goal

— try to send big packets
— to lower packet header overhead

* When Nagle's algorithm 1s not beneficial

— €.g., mouse movement in X-window
* mouse pointer stalls and jumps due to delayed update

— also, interaction with delayed acknowledgment

— to disable Nagle's algorithm through socket API
* setsockopt(..., ..., TCP_NODELAY, ..., ...);

6/11/07 CSc 450/550

13
Q: why delay acknowledgment?

Receiver: small packet problem
* Problem

— silly window syndrome: application keeps
reading data byte-by-byte

— receiver keeps advertising small window (

Receiver's buffer is full

* sender has to send small packets

l

* David Clark's solution N

— recelver only advertises ~——— Room for one more byte

l

Window update segment sent

* at least one MSS, or . e

* half window size

Header > New byte arrives

— goal / |

LEye Receiver's buffer is full

6/11/07

* try to advertise big windows k

Between sender and receiver

* Sending small packets are bad
— application always gives small write/read

* Sender's approach: Nagle's algorithm
— try to wait until a big packet can be sent

* Recerver's approach: Clark's solution
— try to wait until a big window can be advertised
— delayed acknowledgment
* piggyback acknowledgment packets with data packets

* Trade-off: extra delay

6/11/07 CSc 450/550 15

TCP window space

* Window space (16-bit)
— maximum window size 2!6-1: ~64K bytes!
— achievable throughput limit: ~ win/rtt
— keep the “pipe” full
* TCP over “long-fat” networks (LFN)
— long: large round-trip time
— fat: high bandwidth

— low utilization due to window limit

6/11/07 CSc 450/550

rtt

elephant n%twork

TCP large window

* Extension: TCP large window
— TCP window scale option
— left shift up to 14 bit
* i.e., maximum window size 2°°-1: 1GB
* TCP sequence number space (32-bit)
— new data: within 2°' from left window edge

— 2 * maximum window size <= 23!
sender |

. < > 231
IrcCC1ver |
I

6/11/07 CSc 450/550 17
Q: why not shift more?

This lecture

* TCP flow control

— purpose
— mechanism
* sliding variable window: seqno, ackno, win
* Explore further

— TCP large window, PAWS with timestamp
* RFC1323: TCP extensions for high performance

— 1n tcpdump (or Ethereal)

* time sip:spt > dip:dpt: P 144:192 (48) ack 321 win 16022
6/11/07 CSc 450/550 18

Next lectures

* TCP error control
* TCP congestion control

6/11/07 CSc 450/550

19

