
6/14/06 CSc 450/550 1

CSc 450/550
Computer Networks

Error Control

Jianping Pan

Summer 2007

6/14/06 CSc 450/550 2

Review: TCP flow control

• Purpose
– to avoid overflow

• Mechanism
– sliding window
– variable window

Q: seq, ack, win?

6/14/06 CSc 450/550 3

Error control

• Service provided by TCP
– connection-oriented, reliable data transfer

• Service provided by IP
– connectionless, unreliable packet delivery
– packets may get

• lost
• duplicated
• corrupted
• reordered

Q: why?

6/14/06 CSc 450/550 4

TCP packet header

6/14/06 CSc 450/550 5

What can go wrong?

• IP packet delivery
– lost

• transmission error or network congestion

– duplicated
• deleted by referring to sequence number; done

– corrupted
• arrived but in “bad shape”

– reordered
• rearranged by referring to sequence number; done

6/14/06 CSc 450/550 6

Error detection

• Corrupted packets
– detected by TCP checksum

• action: drop!

• Lost packets
– how do you tell if something is already lost?
– TCP sender

• timer for acknowledgment

– TCP receiver (cumulative acknowledgment)
• duplicate acknowledgment

6/14/06

TCP/IP checksum
• Algorithm: 16-bit one compliment of one’s

compliment sum with carry
– 16-bit: padding when necessary

• cover: TCP header, payload, pseudo header

– calculate: pad, sum, carry, compliment => checksum
– verify: sum with checksum, carry, compliment => 0?

• Examples
1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

6/14/06 CSc 450/550 8

IP pseudo header

• TCP checksum also covers IP pseudo header
– to detect mis-delivered packets by IP layer

• include: IP addresses, protocol ID, segment length

Q: why pseudo header?

6/14/06 CSc 450/550 9

TCP sender timer

• TCP sender
– start a timer when sending out a packet

• in reality: one timer per a window of packets

– on acknowledgment “covering” this packet
• cancel the timer and setup another one

– if timer timeouts: indicate packet may be lost

• Timeout value
– too soon: unnecessary transmission
– too late: “slow response”

data

ack

rtt

6/14/06 CSc 450/550 10

TCP round-trip time

• RTT measurement and calculation
– RTT sample

• time from sending a packet to receiving its ack
– coarse-grained: 500 ms in BSD

• ignore retransmitted packets

– smoothed RTT (SRTT)
• exponentially weighted moving average (EWMA)

• SRTTi+1 = SRTTi + a (RTT-SRTTi)

• a = 1/8

6/14/06 CSc 450/550 11

EWMA example
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
TT

 (m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

6/14/06 CSc 450/550 12

TCP timeout value

• RTO calculation based on SRTT
– RTT variance (RTTV)

• RTTVi+1 = RTTVi+b(|RTT-SRTTi|-RTTVi)

• b = 1/4

– RTO
• RTO = d (SRTT + c RTTV)
• c: initially 2, now 4
• d: backoff factor

– initially 1, doubled when timeout until reaching the maximum

– initial SRTT, RTTV and minimum RTO

6/14/06 CSc 450/550 13

TCP
sender
(simplified

with no flow
control and
congestion

control)

 send_next = InitialSeqNum
 ack = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number send_next
 if (timer currently not running)
 start timer with timer's seqno = send_next
 pass segment to IP
 send_next = send_next + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer with the resent seqno

 event: ACK received, with ACK field value of y
 if (y > ack) {
 ack = y

 cancel timer with timer's seqno < y
 if (timer not running && there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

6/14/06 CSc 450/550 14

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=12

0

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=12

0

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=10

0

time

Se
q=

92
 t

im
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

lossti
m

eo
ut

Cumulative ACK

Host B

X

Seq=100, 20 bytes data

ACK=1

20

time

6/14/06 CSc 450/550 15

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK waiting

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap
(accept out-or-order)

6/14/06 CSc 450/550 16

Duplicate acknowledgment

• TCP acknowledgment
– cumulative acknowledgment
– example

• rcv: [0, 500),[500, 1000),[1500, 2000),[2000, 2500)
• ack: 500,1000,1000 (1st dupack),1000 (2nd dupack)

• Enough duplicate acknowledgments
– indicate packet loss may have occurred

• ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
• packet [1000,1500) is considered lost

6/14/06 CSc 450/550 17

Error recovery

• End-to-end retransmission
– go-back-N (GBN)

• retransmit from ackno and upward

– selective retransmission
• only retransmit those “known” to be lost

• TCP’s error recovery
– mostly GBN

• receiver can buffer out-of-order packets

– explore further: TCP selective acknowledgment

6/14/06 CSc 450/550 18

GBN in
action
(N = 4)

Q: how does SR look like?

6/14/06 CSc 450/550 19

This lecture

• TCP error control
– purpose
– mechanisms

• detection
• recovery

• Explore further
– TCP selective acknowledgment (SACK)
– http://www.icir.org/floyd/

6/14/06 CSc 450/550 20

One more message...

• NSERC USRA opportunities
– http://www.cs.uvic.ca/~pan/usra/
– get a taste of doing research

• answer unanswered questions and improve answered ones!

– possible projects
• First, you can always propose your own projects...
• Multimedia Streaming over Multipath Networks
• Scalable Network measurement on UVicNet
• A Network Testbed for Service Provider Networks
• and more...

6/14/06 CSc 450/550 21

Next lectures

• TCP congestion control

