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Review: TCP tlow control

* Purpose

— to avoid overflow
* Mechanism

— sliding window

— variable window
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Error control

* Service provided by TCP

— connection-oriented, reliable data transfer

* Service provided by IP
— connectionless, unreliable packet delivery
— packets may get Q: why?
* lost
* duplicated
* corrupted
* reordered
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TCP packet header

E 32 Bits -
l l l | | I l l l I | | | | l | | | l l
Source port Destination port
Sequence number >
Acknowledgement number >
TCP UIA|P|R|S|F
header RIC|IS|S|Y]|I Window size
length G|K|H|T|N|N
Checksum > Urgent pointer
ot Options (0 or more 32-bit words) —
= Data (optional) gy
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What can go wrong?

* IP packet delivery

— lost

* transmission error or network congestion

— duplicated

* deleted by referring to sequence number; done

— corrupted
* arrived but in “bad shape”

— reordered

* rearranged by referring to sequence number; done
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Error detection

* Corrupted packets
— detected by TCP checksum
* action: drop!
* Lost packets
— how do you tell if something is already lost?
— TCP sender

* timer for acknowledgment

— TCP receiver (cumulative acknowledgment)

* duplicate acknowledgment
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compliment sum with carry

TCP/IP checksum

* Algorithm: 16-bit one compliment of one’s

— 16-bit: padding when necessary
* cover: TCP header, payload, pseudo header

— calculate: pad, sum, carry, compliment => checksum

— verify: sum with checksum, carry, compliment => 0?
1110011 001100110

* Examples

11 0101010101010

1

wraparound ()1 01 1 1 0111011101
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[P pseudo header

* TCP checksum also covers IP pseudo header

— to detect mis-delivered packets by IP layer
* include: IP addresses, protocol ID, segment length

- 32 Bits -

Source address

Destination address

00000000 Protocol = 6 TCP segment length
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data

TCP sender timer ™

* TCP sender

— start a timer when sending out a packet
* 1n reality: one timer per a window of packets

\/

ack

— on acknowledgment “covering” this packet
* cancel the timer and setup another one

— 1f timer timeouts: indicate packet may be lost
* Timeout value

— t00 soon: unnecessary transmission

— too late: “slow response”
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TCP round-trip time

* RTT measurement and calculation
— RTT sample

* time from sending a packet to receiving its ack

— coarse-grained: 500 ms in BSD

* 1gnore retransmitted packets

— smoothed RTT (SRTT)

* exponentially weighted moving average (EWMA)
« SRTT,,, =SRTT, + a (RTT-SRTT))
*a=1/8
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EWMA example

RTT: gaia.cs.uness.edu to fantasia.eurecomfr
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TCP timeout value

* RTO calculation based on SRTT

— RTT variance (RTTV)
« RTTV,, =RTTV+H(|[RTT-SRTT|-RTTV))
*b=1/4

— RTO

* RTO=d (SRTT + ¢ RTTV)
* c: mnitially 2, now 4
* d: backoff factor

— 1nitially 1, doubled when timeout until reaching the maximum

—itial SRTT, RTTV and minimum RTO
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send next = InitialSeqNum
ack = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number send next
if (timer currently not running)
start timer with timer's segno = send_next
pass segment to IP
send_next = send_next + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer with the resent seqno

event: ACK received, with ACK field value of y
if (y > ack) {
ack =y
cancel timer with timer's segno <y

TCP

sender
(simplified
with no tlow
control and
congestion
control)

if (timer not running && there are currently not-yet-acknowledged segments)

start timer

}
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TCP: retransmission scenarios
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TCP ACK generation [RFC 1122, REC 2581]

Event at Recelver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK waiting

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap
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Immediate send ACK, provided that
segment starts at lower end of gap

%accept out-or-order)
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Duplicate acknowledgment

* TCP acknowledgment
— cumulative acknowledgment

— example
* rcv: [0, 500),[500, 1000),[1500, 2000),[2000, 2500)
* ack: 500,1000,1000 (1st dupack),1000 (2nd dupack)

* Enough duplicate acknowledgments

— indicate packet loss may have occurred
* ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
* packet [1000,1500) 1s considered lost
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Error recovery

* End-to-end retransmission
— go-back-N (GBN)
* retransmut from ackno and upward

— selective retransmission
* only retransmit those “known” to be lost

* TCP’s error recovery
— mostly GBN

* receiver can buffer out-of-order packets

— explore further: TCP selective acknowledgment
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This lecture

* TCP error control

— purpose

— mechanisms
* detection
* recovery

* Explore further

— TCP selective acknowledgment (SACK)
— http://www.icir.org/floyd/
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One more message...

« NSERC USRA opportunities

— http://www.cs.uvic.ca/~pan/usra/

— get a taste of doing research

 answer unanswered questions and improve answered ones!
— possible projects

* First, you can always propose your own projects...

e Multimedia Streaming over Multipath Networks

 Scalable Network measurement on UVicNet

» A Network Testbed for Service Provider Networks

 and more...
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Next lectures

* TCP congestion control
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