6/14/06

CSc 450/550

Computer Networks
Error Control

Jianping Pan
Summer 2007

CSc 450/550

Review: TCP tlow control

* Purpose

— to avoid overflow
* Mechanism

— sliding window

— variable window

6/14/06 .
Q: seq, ack, win?

Sender

Application
doesa 2K ——»
write

Application
does a 2K —
write

Sender is)
blocked

Sender may
send up to 2K —

0
SOk = 40% L
8
SOk = A0% wWin=22

ACK = 2048 WIN = 2048

g,

0

Receiver Receiver's

buffer
4K

Empty

2K

Full

Application
reads 2K

2K

1K

2K

Error control

* Service provided by TCP

— connection-oriented, reliable data transfer

* Service provided by IP
— connectionless, unreliable packet delivery
— packets may get Q: why?
* lost
* duplicated
* corrupted
* reordered

6/14/06 CSc 450/550 3

TCP packet header

E 32 Bits -
l l l | | I l l l I | | | | l | | | l l
Source port Destination port
Sequence number >
Acknowledgement number >
TCP UIA|P|R|S|F
header RIC|IS|S|Y]|I Window size
length G|K|H|T|N|N
Checksum > Urgent pointer
ot Options (0 or more 32-bit words) —
= Data (optional) gy
6/14/06 CSc 450/550 4

What can go wrong?

* IP packet delivery

— lost

* transmission error or network congestion

— duplicated

* deleted by referring to sequence number; done

— corrupted
* arrived but in “bad shape”

— reordered

* rearranged by referring to sequence number; done
6/14/06 CSc 450/550

Error detection

* Corrupted packets
— detected by TCP checksum
* action: drop!
* Lost packets
— how do you tell if something is already lost?
— TCP sender

* timer for acknowledgment

— TCP receiver (cumulative acknowledgment)

* duplicate acknowledgment
6/14/06 CSc 450/550

compliment sum with carry

TCP/IP checksum

* Algorithm: 16-bit one compliment of one’s

— 16-bit: padding when necessary
* cover: TCP header, payload, pseudo header

— calculate: pad, sum, carry, compliment => checksum

— verify: sum with checksum, carry, compliment => 0?
1110011 001100110

* Examples

11 0101010101010

1

wraparound ()1 01 1 1 0111011101

6/14/06

sum
checksum

1

v

1
0]

0
1

111
00O

0]
1

111
00O

o)
1

1111
00O00O

o)
1

0]
1

[P pseudo header

* TCP checksum also covers IP pseudo header

— to detect mis-delivered packets by IP layer
* include: IP addresses, protocol ID, segment length

- 32 Bits -

Source address

Destination address

00000000 Protocol = 6 TCP segment length

6/14/06 CSc 450/550 8

Q: why pseudo header?

data

TCP sender timer ™

* TCP sender

— start a timer when sending out a packet
* 1n reality: one timer per a window of packets

\/

ack

— on acknowledgment “covering” this packet
* cancel the timer and setup another one

— 1f timer timeouts: indicate packet may be lost
* Timeout value

— t00 soon: unnecessary transmission

— too late: “slow response”
6/14/06 CSc 450/550 9

TCP round-trip time

* RTT measurement and calculation
— RTT sample

* time from sending a packet to receiving its ack

— coarse-grained: 500 ms in BSD

* 1gnore retransmitted packets

— smoothed RTT (SRTT)

* exponentially weighted moving average (EWMA)
« SRTT,,, =SRTT, + a (RTT-SRTT))
*a=1/8

6/14/06 CSc 450/550

10

EWMA example

RTT: gaia.cs.uness.edu to fantasia.eurecomfr

350 ~

300

RTT (milliseconds)
N
3

N
o
o

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
tine (seconnds)

| —— SampleRTT —#— Estimated RTT

6/14/06 CSc 450/550 11

TCP timeout value

* RTO calculation based on SRTT

— RTT variance (RTTV)
« RTTV,, =RTTV+H(|[RTT-SRTT|-RTTV))
*b=1/4

— RTO

* RTO=d (SRTT + ¢ RTTV)
* c: mnitially 2, now 4
* d: backoff factor

— 1nitially 1, doubled when timeout until reaching the maximum

—itial SRTT, RTTV and minimum RTO

6/14/06 CSc 450/550

12

send next = InitialSeqNum
ack = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number send next
if (timer currently not running)
start timer with timer's segno = send_next
pass segment to IP
send_next = send_next + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer with the resent seqno

event: ACK received, with ACK field value of y
if (y > ack) {
ack =y
cancel timer with timer's segno <y

TCP

sender
(simplified
with no tlow
control and
congestion
control)

if (timer not running && there are currently not-yet-acknowledged segments)

start timer

}

6/14/06 CSc 450/550
} " end of loop forever */

13

TCP: retransmission scenarios

Host A Host B/]

Se \9
92 8p =
I W 'g I 8b es data
+— Q
3 £ 3 - A0V
S d.
£ X o .§ ata
l loss 3 0Sss
Seg=g !
Q
E v
= AL
- o
poKat® o ~ !
0 & . v
& time

Cumulative ACK

v premature timeout
Time

time :
lost ACK scenario

6/14/06 CSc 450/550 14

TCP ACK generation [RFC 1122, REC 2581]

Event at Recelver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK waiting

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

6/14/06

Immediate send ACK, provided that
segment starts at lower end of gap

%accept out-or-order)
CSc 450/550 15

Duplicate acknowledgment

* TCP acknowledgment
— cumulative acknowledgment

— example
* rcv: [0, 500),[500, 1000),[1500, 2000),[2000, 2500)
* ack: 500,1000,1000 (1st dupack),1000 (2nd dupack)

* Enough duplicate acknowledgments

— indicate packet loss may have occurred
* ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
* packet [1000,1500) 1s considered lost

6/14/06 CSc 450/550 16

Error recovery

* End-to-end retransmission
— go-back-N (GBN)
* retransmut from ackno and upward

— selective retransmission
* only retransmit those “known” to be lost

* TCP’s error recovery
— mostly GBN

* receiver can buffer out-of-order packets

— explore further: TCP selective acknowledgment
6/14/06 CSc 450/550 17

GBN iIl sender receiver
” send pkiQ

(N _ 4) send pkil send ACKO
> sendpki2 —_ (loss) ord AcKT
send pkt3
(waif) rev pkid, discard
A/ send ACK
rcv ACKO
send pkt4
rcv pki4, discard
Srgr\fc?gkfl(é \ SencF::l) ACK
kt5, di d
— okt2 timeout send AGKT "

send pkt2

send pkt3 § rcv pki2, deliver
send pkt4 send ACK?
send pktd rcv pkt3, deliver
send ACK3

/

6/14/06 CSc 450/550

8
Q: how does SR loolk like?

This lecture

* TCP error control

— purpose

— mechanisms
* detection
* recovery

* Explore further

— TCP selective acknowledgment (SACK)
— http://www.icir.org/floyd/

6/14/06 CSc 450/550

19

One more message...

« NSERC USRA opportunities

— http://www.cs.uvic.ca/~pan/usra/

— get a taste of doing research

 answer unanswered questions and improve answered ones!
— possible projects

* First, you can always propose your own projects...

e Multimedia Streaming over Multipath Networks

 Scalable Network measurement on UVicNet

» A Network Testbed for Service Provider Networks

 and more...

6/14/06 CSc 450/550 20

Next lectures

* TCP congestion control

6/14/06 CSc 450/550

21

