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Review: TCP flow control

• Purpose
– to avoid overflow

• Mechanism
– sliding window
– variable window

Q: seq, ack, win?
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Error control

• Service provided by TCP
– connection-oriented, reliable data transfer

• Service provided by IP
– connectionless, unreliable packet delivery
– packets may get

• lost
• duplicated
• corrupted
• reordered

Q: why?
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TCP packet header
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What can go wrong?

• IP packet delivery
– lost

• transmission error or network congestion

– duplicated
• deleted by referring to sequence number; done

– corrupted
• arrived but in “bad shape”

– reordered
• rearranged by referring to sequence number; done
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Error detection

• Corrupted packets
– detected by TCP checksum

• action: drop!

• Lost packets
– how do you tell if something is already lost?
– TCP sender

• timer for acknowledgment

– TCP receiver (cumulative acknowledgment)
• duplicate acknowledgment
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TCP/IP checksum
• Algorithm: 16-bit one compliment of one’s 

compliment sum with carry
– 16-bit: padding when necessary

• cover: TCP header, payload, pseudo header

– calculate: pad, sum, carry, compliment => checksum
– verify: sum with checksum, carry, compliment => 0?

• Examples
1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum



6/14/06 CSc 450/550 8

IP pseudo header

• TCP checksum also covers IP pseudo header
– to detect mis-delivered packets by IP layer

• include: IP addresses, protocol ID, segment length

Q: why pseudo header?



6/14/06 CSc 450/550 9

TCP sender timer

• TCP sender
– start a timer when sending out a packet

• in reality: one timer per a window of packets

– on acknowledgment “covering” this packet
• cancel the timer and setup another one

– if timer timeouts: indicate packet may be lost

• Timeout value
– too soon: unnecessary transmission
– too late: “slow response”

data

ack

rtt
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TCP round-trip time

• RTT measurement and calculation
– RTT sample

• time from sending a packet to receiving its ack
– coarse-grained: 500 ms in BSD

• ignore retransmitted packets

– smoothed RTT (SRTT)
• exponentially weighted moving average (EWMA)

• SRTTi+1 = SRTTi + a (RTT-SRTTi)

• a = 1/8
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EWMA example
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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TCP timeout value

• RTO calculation based on SRTT
– RTT variance (RTTV)

• RTTVi+1 = RTTVi+b(|RTT-SRTTi|-RTTVi)

• b = 1/4

– RTO
• RTO = d (SRTT + c RTTV)
• c: initially 2, now 4
• d: backoff factor

– initially 1, doubled when timeout until reaching the maximum

– initial SRTT, RTTV and minimum RTO
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TCP 
sender
(simplified

with no flow
control and 
congestion

control)

        send_next = InitialSeqNum
       ack = InitialSeqNum

        loop (forever) { 
           switch(event) 

           event: data received from application above 
                 create TCP segment with sequence number send_next 
                 if (timer currently not running)
                       start timer with timer's seqno = send_next
                 pass segment to IP 
                 send_next = send_next + length(data) 

            event: timer timeout
                 retransmit not-yet-acknowledged segment with 
                         smallest sequence number
                 start timer with the resent seqno

            event: ACK received, with ACK field value of y 
                 if (y > ack) { 
                       ack = y

       cancel timer with timer's seqno < y
                      if (timer not running && there are currently not-yet-acknowledged segments)
                               start timer 
                      } 

         }  /* end of loop forever */ 
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TCP: retransmission scenarios
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK waiting

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap 
(accept out-or-order)
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Duplicate acknowledgment

• TCP acknowledgment
– cumulative acknowledgment
– example

• rcv: [0, 500),[500, 1000),[1500, 2000),[2000, 2500)
• ack: 500,1000,1000 (1st dupack),1000 (2nd dupack)

• Enough duplicate acknowledgments
– indicate packet loss may have occurred

• ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
• packet [1000,1500) is considered lost
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Error recovery

• End-to-end retransmission
– go-back-N (GBN)

• retransmit from ackno and upward

– selective retransmission
• only retransmit those “known” to be lost

• TCP’s error recovery
– mostly GBN

• receiver can buffer out-of-order packets

– explore further: TCP selective acknowledgment
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GBN in
action 
(N = 4)

Q: how does SR look like?
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This lecture

• TCP error control
– purpose
– mechanisms

• detection
• recovery

• Explore further
– TCP selective acknowledgment (SACK)
– http://www.icir.org/floyd/
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One more message...

• NSERC USRA opportunities
– http://www.cs.uvic.ca/~pan/usra/
– get a taste of doing research

• answer unanswered questions and improve answered ones!

– possible projects
• First, you can always propose your own projects...
• Multimedia Streaming over Multipath Networks
• Scalable Network measurement on UVicNet
• A Network Testbed for Service Provider Networks
• and more...
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Next lectures

• TCP congestion control


