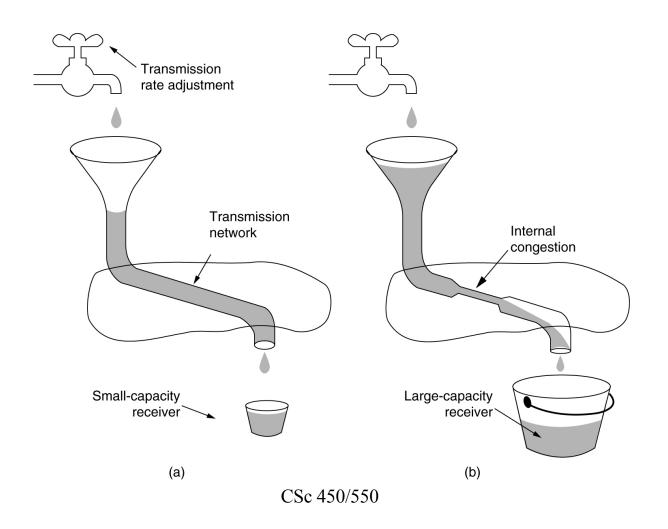
CSc 450/550 Computer Networks Congestion Control

Jianping Pan
Summer 2007


Review: TCP mechanisms

- Connection management
 - packet handshake
- Flow control
 - sliding variable window
- Error control
 - error detection
 - error recovery

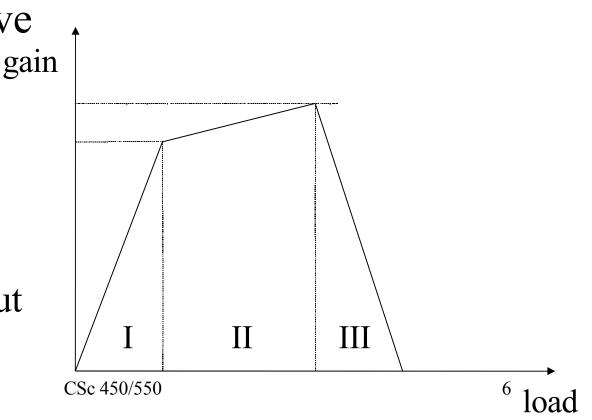
Why congestion control?

- Flow control
 - coordinate sender and receiver (buffer)
- Network congestion
 - coordination between the sender and network
 - avoid a sender to overflow a router
 - coordination among many senders
 - traffic aggregation from many senders
 - congestion syndrome
 - increasing queuing delay, packet drop

Flow vs congestion control

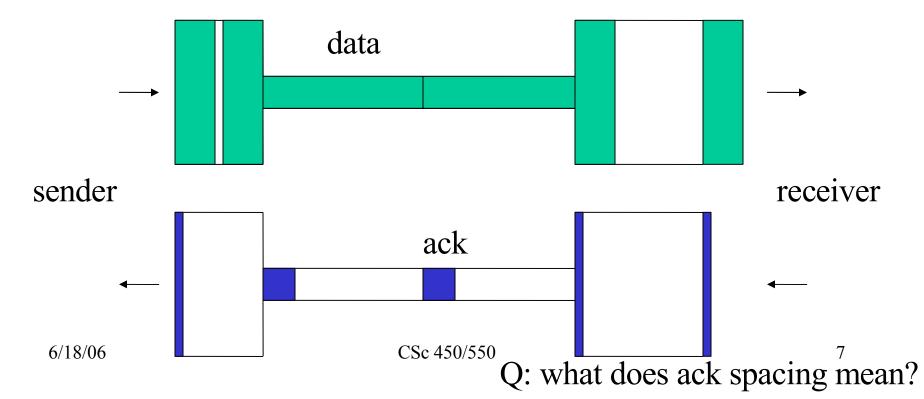
6/18/06

Congestion control approaches


- End-to-end approach
 - congestion indicators for the endpoint
 - packet loss
 - also can be caused by transmission error
 - increasing round-trip time
 - also can be caused by alternative routes
- Network-assisted approach
 - ICMP source quenching
 - explicit congestion notification (ECN)

CSc 450/550 6/18/06

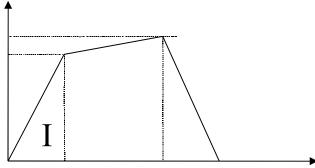
Load-gain curve


- Gain: ~ throughput/delay
- Load-gain curve
 - low load g
 - medium load
 - high load
- Congestion
 - low throughput
 - high delay

- very low gain

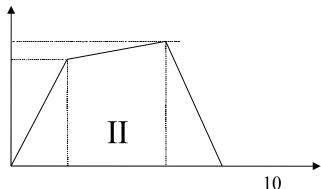
Congestion control principles

- Principle: packet conservation in steady state
 - acknowledgment self-clocking



TCP congestion control

- Changes at sender only
 - an add-on to TCP flow control
- Sender variables
 - congestion window (cwnd)
 - sender window = $\min \{..., ..., cwnd\}$
 - initially, cwnd = 1 MSS (maximal segment size)
 - slow-start threshold (ssthresh)
 - initial ssthresh


Slow start

- Slow start
 - when cwnd < ssthresh</p>
 - on each new ack
 - cwnd += 1 MSS
 - effectively, doubling cwnd every RTT
 - "start small, but grow really fast"
 - Q: why?

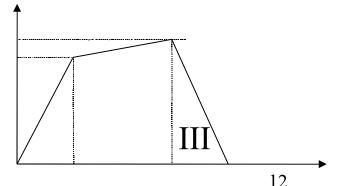
Congestion avoidance

- Congestion avoidance
 - when cwnd > ssthrehsh
 - on each new ack
 - cwnd += MSS²/cwnd
 - effectively, cwnd += 1 MSS every RTT
 - linear increment

Q: why increase cwnd to "avoid" congestion?

Network congestion

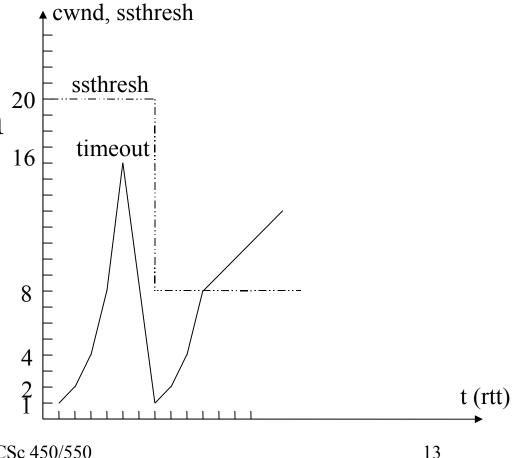
- cwnd is always increased in slow-start and congestion avoidance
 - network congestion is inevitable
- Network congestion indicator
 - TCP treats packet loss as network congestion
- Packet loss indicators
 - acknowledgment timeout
 - 3 duplicate acknowledgments


6/18/06

Timeout retransmit

CSc 450/550

- Timeout
 - -RTO = d (SRTT + c RTTV)
- Congestion control
 - ssthresh = cwnd / 2
 - cwnd = 1 MSS
 - followed by slow-start
- Error control
 - retransmit packet


- backoff timer

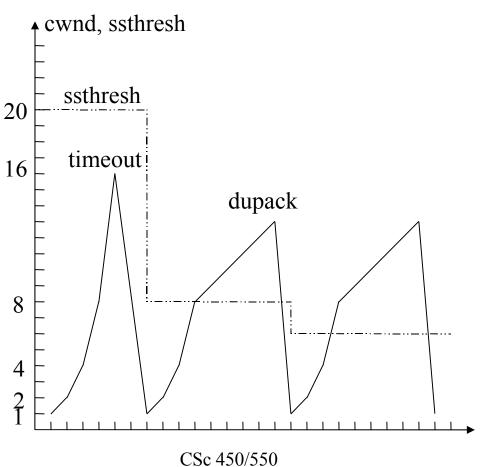
Q: how to calculate SRTT and RTTV?

Congestion window

- Slow-start
- Congestion avoidance
- Timeout retransmission
 - TCP timeout is quite conservative
 - pay attention to how ssthresh is adjusted!

6/18/06

CSc 450/550


Fast retransmit

- Duplicate acknowledgment
 - example
 - rcv: [0, 499], [500, 999], [1500, 1999], [2000, 2499], [2500, 2999]
 - ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
- Congestion control (fast retransmit)
 - on 3rd dupack: ssthresh=cwnd/2; cwnd=1 MSS
 - followed by slow start
- Error control

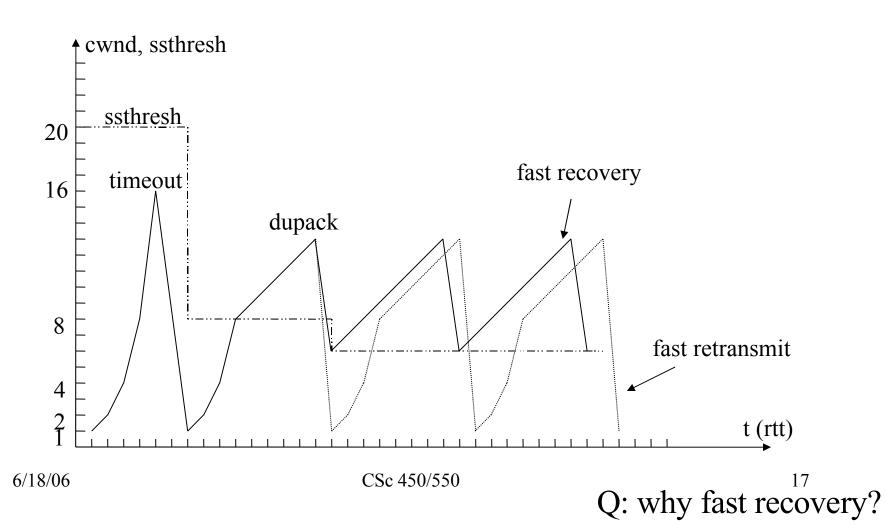
```
- retransmit: [1000,1499]
```

Q: dupack $\stackrel{14}{=}$ loss?

Fast retransmit: cwnd

t (rtt)

6/18/06


Q: why "fast" retransmit?

Fast recovery

- Duplicate acknowledgment
 - example
 - rcv: [0, 499], [500, 999], [1500, 1999], [2000, 2499], [2500, 2999]
 - ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
- Congestion control (fast recovery)
 - on 3rd dupack: cwnd=ssthresh=cwnd/2
 - followed by congestion avoidance
- Error control
 - retransmit: [1000,1499]

Q: fast transmit vs recovery?

Fast recovery: cwnd

This lecture

- Congestion control
 - purpose and approach
 - TCP congestion control
 - slow-start, congestion avoidance
 - timeout retransmit
 - fast retransmit, fast recovery
- Explore further
 - TCP congestion control [RFC2581]
- http://www.cs.uvic.ca/~pan/csc485

Next lectures

- May 21: more on TCP congestion control
- May 25: UDP
- May 27: extra before-exam office hours
 - regular office hours: MR
 - use the google group: get help and help others
- May 28: 2nd in-class midterm exam