
CSc 450/550: Computer Communications and Networks1

(Summer 2007)2

Lab Project 1: A Simple Multi-Thread Web Server3

Spec Out: May 11, 20074

Demo Due: May 30, 20075

Code Due: June 1, 20076

1 Introduction7

In this project, students will build a simple, multi-thread “Web” server in C or C++. The project8

will allow students to refresh their C or C++, socket and pthread programming skills, and to9

better understand the Hyper-Text Transfer Protocol (HTTP) underneath the World-Wide Web.10

2 Background11

2.1 socket API12

socket is the Application Programming Interface (API) to network services in many operating13

systems. For a “server”-like application, normally you will need to use the following system calls.14

• socket(): to create a new socket15

• bind(): to associate the socket to a local address16

• listen(): to wait for an incoming connection request17

• accept(): to accept the incoming connection request with a new socket18

• recv(): to read from the socket19

• send(): to write to the socket20

• close(): to close the socket and release the resources allocated21

You will want to read the manual page (e.g., man socket) to better understand these system22

calls and their input arguments and return values. You may need to use other socket-related23

system calls or auxiliary library calls as well. It is very important to check the return value of these24

function calls in your program to determine whether the intended operation is successful.25

For more information on socket programming, please see [1].26

1



2.2 pthread Library27

pthread is the POSIX standards-based API to multi-threading programming in many operating28

systems. The following library calls are used to create, terminate and synchronize threads.29

• pthread create(): to create a new thread30

• pthread exit(): to terminate the calling thread31

• pthread join(): to suspend the calling thread and to wait for the target thread to finish32

All threads in the same process share most data. To provide finer thread synchronization, you33

may want to use mutual exclusion (pthread mutex lock() and pthread mutex unlock()) and34

condition variables (pthread cond wait() and pthread cond signal()) in some cases.35

Again, you may want to read the pthread manual page (e.g., man pthread create).36

For more information on pthread programming, please see [2].37

2.3 HTTP Protocol38

HTTP is a client-server, request-response application-layer protocol for the Web. In this project,39

only a very simplified version of HTTP/1.0 is to be implemented.40

2.3.1 Simplified HTTP Request41

As being stated in the HTTP/1.0 specification: “A request message from a client to a server includes,42

within the first line of that message, the method to be applied to the resource, the identifier of the43

resource, and the protocol version in use.” [3]44

For example, when wget -d www.csc.uvic.ca, it shows45

46

Message Explanation (required or ignored by the simple web server)

GET / HTTP/1.0 method, request URI, HTTP version (required)
User-Agent: Wget/1.10.2 Request header (ignored)
Accept: */* Request header (ignored)
Host: www.csc.uvic.ca Request header (ignored)
Connection: Keep-Alive Request header (ignored)

a blank line indicating the end of request headers (required)

47

The simple web server will read the request line, which includes method, request URI and48

HTTP version separated by string delimiters (e.g., blank spaces or tabs), but will ignore all49

request headers, until it reaches the end of request headers indicated by a blank line.50

Method and HTTP version are not case sensitive; however, URI is case sensitive.51

The simple web server only supports the GET method, which obtains an HTTP object (often an52

HTML file) from the web server.53

URI identifies the HTTP object. For example, GET / HTTP/1.0 tries to obtain the default file54

index.html from the root of the web server document directory. If the web server’s root document55

directory is /tmp/www, then /tmp/www/index.html, if existent, is retrieved and returned by the56

web server; otherwise, a Not Found error message is returned instead. GET /icons/new.gif will57

let the web server retrieve /tmp/www/icon/new.gif.58

2



The simple web server only recognizes HTTP/1.0 as the valid HTTP version supported.59

The web server will return a Bad Request error message if an invalid request line or an incom-60

plete request message is encountered. The minimal, valid request message contains a valid request61

line and a blank line indicating the end of the request.62

2.3.2 Simplified HTTP Response63

As being stated in the HTTP/1.0 specification: “After receiving and interpreting a request message,64

a server responds in the form of an HTTP response message.” [3]65

When wget -d www.csc.uvic.ca, the web server returns66

67

Message Explanation (required or omitted in the simple web server)

HTTP/1.1 200 OK HTTP version, status code, reason phrase (required)
Date: Wed, 02 May ... response header (omitted)
Server: Apache/2. ... response header (omitted)
X-Powered-By: PHP/4 ... response header (omitted)
Connection: c ... response header (omitted)
Content-Type: text/ ... response header (omitted)

a blank line indicating the end of response headers (required)
index.html content HTTP object(s) returned (required, if any)

68

The simple web server will return the response line, which includes HTTP version, status69

code and reason phrase separated by blank spaces, but will omit all response headers shown70

above. However, the simple web server will return a blank line indicating the end of response71

headers and the start of the returned HTTP object, if any.72

The response line is not case sensitive, but it is suggested to follow the convention shown above.73

The simple web server only returns HTTP/1.0 as the valid HTTP version supported.74

The simple web server only supports the following list of status codes and reason phrases.75

Status Code Reason Phrase Explanation

200 OK good request with the requested object to be returned
400 Bad Request bad request not understood by the server
404 Not Found good request with no matching request object

76

If the simple web server can understand the request, and the request object is successfully77

retrieved, it will return HTTP/1.0 200 OK followed by a blank line and the content of the requested78

object. If the simple web server cannot understand the request, it will return HTTP/1.0 400 Bad79

Request followed by a blank line. If the simple web server can understand the request, but the80

requested object is not available (e.g., nonexistence, bad file permission, etc), it will return HTTP/1.081

404 Not Found followed by a blank line.82

The simple web server does not have to support persistent connections.83

For more information on HTTP/1.0, please see [3].84

3 Design85

Students will have the freedom of designing their simple, multi-thread web server to be implemented86

in C or C++ with socket API and pthread library. The following is just a possible design.87

3



When the server is invoked, among other things, it will create a “dispatcher” thread to accept88

incoming TCP connections, which transport the HTTP request and response. It can also create a89

few “worker” threads in advance to be assigned by the dispatcher to incoming connections, or these90

threads are created on demand by the dispatcher when a connection comes. The worker thread91

actually reads and processes the HTTP request, and returns the HTTP response and the requested92

object if the request is successful (or an error message otherwise). The worker threads could be93

terminated after an HTTP request is served, or be kept in an idle thread pool for future requests.94

4 Requirements95

4.1 Basic Features96

Basic features are required in all implementations in order to get the full marks for this lab project.97

4.1.1 Invoking the Server98

The syntax to run the simple web server is99

./sws <port> <directory>100

This will invoke the simple web server binary sws in the current directory, and instruct the web101

server to listen at the TCP port for incoming connections and to retrieve requested objects under102

directory. If a wrong syntax is used when invoking the server, the server should print out error103

messages showing the proper usage and exit gracefully.104

When it is invoked succesfully, for example, the simple web server will print out the following105

message if being invoked as ./sws 8080 /tmp/www106

sws is running on port 8080 and serving /tmp/www107

press ’q’ to quit ...108

The client is not allowed to use ../../ to retrieve objects out of the root document directory;109

such requests will be responded with HTTP/1.0 400 Bad Request by the server.110

4.1.2 Server Operations111

When running, the simple web server should respond to incoming requests at TCP port for all112

network interfaces on the machine running the server.113

Once a request is served, the server should print out a log message in the following format.114

MMM DD HH:MM:SS Client-IP:Client-Port request-line response-line [filename]115

For example, if the server, on the noon of May 11, successfully served a request GET / HTTP/1.0116

from the client at port 4096 on host 192.168.0.100, it should print out117

May 11 12:00:00 192.168.0.100:4096 GET / HTTP/1.0 HTTP/1.0 200 OK /tmp/www/index.html118

filename indicates the location of the HTTP object returned, if the request is successfully119

served. The log messages should be ordered chronically and not be scrambled due to the fact that120

there are multiple worker threads.121

4



4.1.3 Multi-Threading122

The simple web server should use multi-threading (up to five “worker” threads) to handle multiple,123

concurrent HTTP requests in a non-blocking fashion. When there are more than five concurrent124

connection requests, the additional requests (at least five extra requests) should be queued in125

listen(). In other words, the simple web server should be able to handle ten concurrent HTTP126

requests without dropping any of them.127

4.1.4 Terminating the Server128

The simple web server should continue serving HTTP requests until the q key is pressed in the129

terminal running the server. When the q key is pressed, the server should finish serving all accepted130

requests, close all created sockets, and release all allocated resources before exiting gracefully.131

After terminating the server, or if the server is aborted, some socket resources may still be used132

by the system. If you rerun the server on the same port immediately (or if there is already a133

program on the same port), normally you will get a bind() error. You can either terminate the134

other program, wait for a while, use another port, or use setsockopt() with level SOL SOCKET and135

option REUSEADDR before bind() to allow port reuse.136

4.2 Bonus Features137

Only a very simplified version of HTTP/1.0 is to be supported by the multi-thread web server.138

However, students have the option to extend their design and implementation to include more139

features in the HTTP protocol (e.g., persistent HTTP connection, HTTP request pipelining, etc)140

and to improve server performance (e.g., caching, etc).141

If you want to design and implement a bonus feature, you should contact the course instructor142

for permission at least one week before the code due date and clearly indicate the feature during143

project demo and in code submission. The credit for correctly implemented bonus features will not144

exceed 20% of the full marks for this lab project.145

5 Self-Testing146

You can test your multi-thread web server with any HTTP/1.0-compliant client, even Telnet. Using147

Telnet, you can connect to your web server running at port on host by148

telnet <host> <port>149

You can then manually type the HTTP request after Telnet says150

Escape character is ’^]’.151

And the HTTP response should follow after a correct HTTP request is successfully processed.152

You can also use multiple Telnet sessions to test the multi-threading feature of your web server.153

To assist your testing, you will be provided a gzipped sample document directory file www.tar.gz,154

and you can recover the sample document directory in /tmp by155

mv www.tar.gz /tmp156

cd /tmp157

tar -zxvf www.tar.gz158

5



A sample request sequence http.request is also included in www.tar.gz159

However, your simple web server might be tested against different document directories and160

request sequences during project demo and code inspection.161

6 Demonstration162

Your simple web server should be demonstrated in the lab section for which you have registered on163

the demo due date. Lab projects not demonstrated will have their code submission not164

marked. It is expected that your lab project be working at the time of demonstration.165

During the project demo, lab instructors will go through a demo checklist together with the student,166

and then provide the checklist to the student. Students will have the chance to improve their design167

and implementation until the code due date.168

The demo is intended to allow students to demonstrate their projects and to help them improve169

their design and implementation, not to be coding or debugging assistance, and only focuses on170

required features (and bonus features if indicated). There is no guarantee on the correctness and171

grade of the project, which can only be determined after the code inspection.172

7 Submission173

The entire lab project, including the code and documentation, should be submitted electrically174

through csc450l (l is for letter L) at http://www.csc.uvic.ca/∼submit/index.cgi on or before175

the code due date.176

Only the source code (including header files and Makefile) and documentation (including Readme)177

should be included in a single tar.gz file to be submitted. No object or binary files are included178

in the submission. If directory is your project directory, to create such a gzipped tarball, you can179

cd direcoty180

tar -zcvf p1.tar.gz .181

This packing and naming convention should be strictly followed to allow your submission to be182

properly located for grading.183

In directory, you need to include a Makefile, which compiles and builds the final binary184

executable (sws) automatically by typing185

make186

The same Makefile also removes all object and binary files when you type in187

make clean188

All projects will be tested on linux.csc.uvic.ca189

In directory, you also need to include a Readme plain text file, which contains your student190

number, registered lab section and a brief description of your design and code structure, as well as191

allowed bonus features, if any.192

The code itself should be sufficiently self-documented. For more information on acceptable193

coding style, please see [4].194

IMPORTANT: All submitted work should be yours. If you have used anything out there,195

even a small component in your implementation, you should credit and reference properly, and196

your contribution can be determined accordingly. For academic integrity policies, please see [5].197

6



8 Marking198

This lab project is worth 15% in the final grade of this course for CSc 450 students, and 10% for199

CSc 550 students.200

For mark posting and appeal policies, please see the official course outline at [5].201

References202

[1] http://beej.us/guide/bgnet/203

[2] http://www.llnl.gov/computing/tutorials/pthreads/204

[3] http://www.w3.org/Protocols/rfc1945/rfc1945205

[4] http://www.csc.uvic.ca/∼csc450l/references/Code-Style.html206

[5] http://courses.seng.engr.uvic.ca/courses/2007/summer/csc/450207

7


