
CSc 450/550: Computer Communications and Networks1

(Summer 2007)2

Lab Project 2: Reliable Datagram Protocol3

Spec Out: June 1, 20074

Design Due: June 20, 20075

Demo Due: July 4, 20076

Code Due: July 6, 20077

1 Introduction8

In this project, students will design and implement a reliable datagram protocol (RDP) over UDP9

to transfer a large binary file from a sender to a receiver, through a shared relay. The project allows10

students to better understand the common transport-layer protocol mechanisms, such as flow, error11

and congestion control. As a design project, only project requirements are provided, and students12

have the freedom to create their own design.13

• Hint: be creative, but you should be able to justify your own design.14

2 Requirements15

2.1 Reliable datagram protocol16

1. RDP should transfer a file of any size from a sender to a receiver, through a shared relay.17

2. The received file should be identical to the sent file in content.18

• Hint: how do you know two files are identical? You can compare them bit-to-bit for19

sure. But for a quick check, you can use md5sum to know that two files of the same size20

are actually different if they do not have the same MD5 checksum.21

• Hint: in order to assist file transfer, you may need to have a simple “application-layer”22

protocol, or being embedded in RDP, to convey the meta information of the file (e.g.,23

file name and size) and indicate the beginning and end of the file transfer.24

3. Maximal RDP packet size (including RDP packet header and data payload): 1024 bytes.25

4. Minimal RDP packet header size: 8 bytes (see Section 2.4).26

• Hint: since the maximal RDP packet size is limited, you may want to minimize the size27

of your RDP packet header, while still achieving the functionality of your design, in order28

to maximize the size of the data payload in each RDP packet.29

1



5. Packets may be dropped, duplicated, reordered and corrupted by the network and the relay.30

• Hint: you will need to include some error control procedures, including error detection,31

error notification and error recovery, in your design.32

6. Due to performance concerns, RDP cannot use the stop-and-wait strategy.33

• Hint: you will need to include some flow control procedures in your design.34

For testing purposes, your RDP should be able to correctly transfer a binary file of minimal size35

1 MB through a relay with packet error probability 0.1 in a reasonable amount of time.36

• Hint: you do not need to implement a full set of TCP protocol mechanisms over UDP, but37

you can use TCP to help you formulate your design. Also, you may use HTTP or FTP to38

help you formulate your “application-layer” protocol.39

2.2 RDP Sender40

Your RDP sender should have the following command line syntax:41

./rdps <file_name> <receiver_ip> <receiver_port> <relay_ip> <relay_port>42

<file name> specifies the location of the file at the sender to be sent to the receiver through the43

relay; <receiver ip> and <receiver port> specify the location of the receiver; <relay ip> and44

<relay port> specify the location of the relay.45

If a wrong syntax is used when invoking the program, the program should print out error46

messages showing the proper usage and exit gracefully. If the file cannot be read (e.g., nonexistence,47

bad file permission, etc), an error message is printed out and the program exits gracefully:48

rdps: read error with <file_name>, exiting...49

Otherwise, the following messages are printed out to show the progress of the file transfer:50

rdps: sending <file_name> of <file_size> bytes to <receiver_ip>:<receiver_port>51

through <relay_ip>:<relay_port>...52

rdps: <TO> <HBOA> <FBOP> <LBOP> <HBOS>53

rdps: <TO> <HBOA> <FBOP> <LBOP> <HBOS>54

...55

rdps: <TO> <HBOA> <FBOP> <LBOP> <HBOS>56

rdps: sent <HBOA+1> bytes in <TO> seconds at <throughput> Bps57

<TO>: time offset in second.microsecond since sending the first data packet; <HBOA>: the58

highest byte offset acknowledged so far (i.e., the receiver has correctly received up to this byte59

inclusive); <FBOP>: the first byte offset in the packet currently being sent; <LBOP>: the last byte60

offset in the packet currently being sent; <HBOS>: the highest byte offset sent in all packets so far.61

Byte offset starts at 0.62

2



2.3 RDP Receiver63

Your RDP receiver should have the following command line syntax:64

./rdpr <receiver_port>65

The received file will be stored in the current directory, with the same <file name> as that at66

the sender. If a wrong syntax is used when invoking the program, the program should print out67

error messages showing the proper usage and exit gracefully. If the file cannot be created, an error68

message is printed out and the program exits gracefully:69

rdpr: write error with <file_name>, exiting...70

Otherwise, the following messages are printed out to show the progress of the file transfer:71

rdpr: receiving <file_name> of <file_size> bytes from <sender_ip>:<sender_port>72

through <relay_ip>:<relay_port>...73

rdpr: <TO> <HBOA> <FBOP> <LBOP> <HBOR>74

rdpr: <TO> <HBOA> <FBOP> <LBOP> <HBOR>75

...76

rdpr: <TO> <HBOA> <FBOP> <LBOP> <HBOR>77

rdpr: received <HBOA+1> bytes in <TO> seconds at <throughput> Bps78

<TO>: time offset in second.microsecond since receiving the first data packet; <HBOA>: the79

highest byte offset acknowledged so far (i.e., the receiver has correctly received up to this byte80

inclusive); <FBOP>: the first byte offset in the packet currently being received; <LBOP>: the last byte81

offset in the packet currently being received; <HBOR>: the highest byte offset received in all packets82

so far. Byte offset starts at 0.83

For testing purposes, you first run your RDP receiver at a given port on one machine and then84

run your RDP sender accordingly on another machine, or at a different port on the same machine,85

with the name of the file to be sent. Both your RDP sender and receiver should exit properly after86

the file is correctly transferred and print out: e.g.,87

rdps: file transfer successful, exiting...88

or a failure is declared by your programs with, e.g.,89

rdps: RDP protocol error, exiting...90

2.4 RDP Relay91

The RDP relay will be provided to you.92

1. The RDP relay command line syntax93

./relay <relay_port> <packet_error_prob>94

3



<packet error prob>, in the range of [0, 1), specifies the probability of a packet being inten-95

tionally corrupted by the relay. Be aware that even when <packet error prob> is 0 at the96

relay, packets may still be dropped, duplicated, reordered and corrupted by the network.97

2. To allow the relay to relay packets from their source to destination, the RDP header should98

begin with the following three fields in the specified order: RDP magic number (16-bit,99

0xabcd), destination port number (16-bit), destination IP address (32-bit), all in network100

byte order (i.e., Big Endian). Additional RDP header fields may be defined by you in your101

design to meet the protocol requirements.102

When the relay receives a packet, it will first check whether the packet has the expected magic103

number (i.e., 0xabcd); if not, the packet will be dropped immediately; otherwise, the relay104

will learn the destination IP address and port number in the RDP header and then send the105

packet to the destination with error probability packet error prob.106

Also, since the relay is shared by multiple file transfers, you may have packets from other file107

transfers delivered to you due to network errors or the errors introduced by the relay.108

3. No direct communication between sender and receiver is allowed.109

3 Design110

The design of your RDP protocol and RDP sender and receiver should be submitted on paper in111

the lab section for which you have registered on the design due date.112

In the initial design, you need to tell lab instructors the RDP packet format and flow and error113

control procedures that you use to meet the protocol requirements. Lab instructors may discuss114

with you whether your design could be improved, so you want to put enough detail there. You still115

can change your design after the design due, and you need to include the final design in the code116

submission and justify your design and the changes you have made.117

If you do not submit your initial design, your final design will not be marked.118

4 Demonstration119

Your RDP sender and receiver should be demonstrated in the lab section for which you have120

registered on the demo due date. Lab projects not demonstrated will have their code121

submission not marked. It is expected that your lab project be working at the time122

of demonstration. During the project demo, lab instructors will go through a demo checklist123

together with the student, and then provide the checklist to the student. Students will have the124

chance to improve their design and implementation until the code due date.125

The demo is intended to allow students to demonstrate their projects and to help them improve126

their design and implementation, not to be coding or debugging assistance, and only focuses on127

required features. There is no guarantee on the correctness and grade of the project, which can128

only be determined after the code inspection.129

5 Submission130

The entire lab project, including the code and documentation, should be submitted electrically131

through csc450l (l is for letter L) at http://www.csc.uvic.ca/∼submit/index.cgi on or before132

4



the code due date.133

Only the source code (including header files and Makefile) and documentation (including134

readme.txt and design.pdf) should be included in a single tar.gz file to be submitted. No135

object or binary files are included in the submission. If directory is your project directory, to136

create such a gzipped tarball, you can137

cd direcoty138

tar -zcvf p1.tar.gz .139

This packing and naming convention should be strictly followed to allow your submission to be140

properly located for grading.141

In directory, you need to include a Makefile, which compiles and builds the final binary142

executable (rdps and rdpr) automatically by typing143

make144

The same Makefile also removes all object and executable files when you type in145

make clean146

All projects will be tested on linux.csc.uvic.ca147

In directory, you need to include readme.txt in plain text format, which contains your student148

number, registered lab section and a brief description of your code structure.149

You also need to include design.pdf in Portable Document Format, which describes and justifies150

your final design and the changes you have made since the initial design, if any.151

The code itself should be sufficiently self-documented. For more information on acceptable152

coding style, please see [1].153

IMPORTANT: All submitted work should be yours. If you have used anything out there, even154

a small component in your design and implementation, you should credit and reference properly,155

and your contribution can be determined accordingly. For academic integrity policies, please see [2].156

6 Marking157

This lab project is worth 15% in the final grade of this course for CSc 450 students, and 10% for158

CSc 550 students.159

For mark posting and appeal policies, please see the official course outline at [2].160

References161

[1] http://www.csc.uvic.ca/∼csc450l/references/Code-Style.html162

[2] http://courses.seng.engr.uvic.ca/courses/2007/summer/csc/450163

5


