
CSc 450/550: Computer Communications and Networks1

(Summer 2007)2

Lab Project 3: A Simple Network Traffic Analyzer3

Spec Out: July 6, 20074

Demo Due: July 25, 20075

Code Due: July 27, 20076

1 Introduction7

In this project, students will build a simple network traffic analyzer to process given tcpdump files.8

The project will allow students to become familiar with the pcap programming library, and to9

better understand the design and implementation of TCP/IP protocols.10

2 Background11

2.1 pcap Library12

pcap library provides a platform-independent interface to capturing packets from network interfaces13

with traffic filters when necessary. pcap can also dump captured packets to files in pcap format. In14

addition, pcap library can be used to read packets from pcap files.15

To read packets from binary tcpdump files in pcap format, the following pcap library calls are16

often used.17

• pcap open offline(): to open a pcap file and create a capture session18

• pcap dispatch() or pcap loop(): to read and process packets with callback function19

• pcap next() or pcap next ex(): to read and process the next packet20

• pcap compile(): to create a traffic filter according to the given expression string21

• pcap setfilter(): to apply the traffic filter22

• pcap freecode(): to release the resource allocated for the traffic filter23

• pcap close(): to close the capture session24

To use pcap library, you need to #include <pcap.h> and link with -lpcap25

For more information on pcap, please man pcap and check http://www.tcpdump.org/pcap.htm26

For a sample program using pcap, please see http://www.tcpdump.org/sniffex.c27

1



2.2 Filter Expression28

pcap supports traffic filters to be applied when capturing or reading packets; with traffic filters, pcap29

appears to only capture specific packets on the network interface or read them from the capture30

file. Users can describe traffic filters in expression strings, which are compiled by pcap.31

The following expression strings are often used:32

• host: host address33

• port: port number34

• proto: network protocol35

Certain abbreviations of the expression strings are allowed. For example, ‘‘tcp port 80 and36

host 192.168.0.1’’ specifies TCP packets with source or destination port number 80 and source37

or destination host address 192.168.0.138

For more information on expression strings, man tcpdump and check the “expression” section.39

2.3 Header Definition40

Common network protocol headers are defined in the following header files:41

• /usr/include/net/ethernet.h: Ethernet header42

• /usr/include/netinet/ether.h: Ethernet MAC address format conversion43

• /usr/include/netinet/ip.h: IP header44

• /usr/include/arpa/inet.h: IP address format conversion45

• /usr/include/netinet/ip icmp.h: ICMP header46

• /usr/include/netinet/tcp.h: TCP header47

• /usr/include/netinet/udp.h: UDP header48

Be aware that some protocol headers may contain header options of variable length.49

3 Design50

Students will have the freedom of designing their simple network traffic analyzer to be implemented51

in C or C++ with pcap library. The following is just a possible design.52

The analyzer can first open the tcpdump file and create a pcap session, if no error occurs.53

Then the analyzer compiles the expression string, if necessary, and applies the traffic filter to the54

pcap session. The analyzer should maintain some data structures to collect certain statistics about55

the TCP connections in the tcpdump file, the TCP packets for a particular TCP connection, or a56

particular TCP packet, when reading and processing packets after applying the filter.57

2



4 Requirements58

4.1 Basic Features59

Basic features are required in all implementations in order to get the full marks for this lab project.60

4.1.1 TCP connections summary61

The network traffic analyzer should print out the summary information about the TCP connections62

in the given tcpdump file, when being invoked as:63

./nta <tcpdump_filename>64

If being successfully invoked, the network traffic analyzer should print out the TCP connections65

summary in the follow format:66

conn_num: init_IP:init_port init_pkts rSF - resp_IP:resp_port resp_pkts rSf67

conn_num: init_IP:init_port init_pkts rSF - resp_IP:resp_port resp_pkts rSF68

...69

conn_num: init_IP:init_port init_pkts Rsf - resp_IP:resp_port resp_pkts Rsf70

That is,71

• conn num: connection number, incrementing from 1 and indicating the order of the first packet72

of the connections in the tcpdump file73

• init IP: the IP address of the TCP connection initiator. The connection initiator is the TCP74

endpoint sending the first connection establishment packet with only SYN flag set. If no such75

packets are observed for a connection, the initiator is assumed to be the source endpoint of76

the first packet of the connection77

• init port: the port number of the TCP connection initiator78

• init pkts: the number of packets sent by the TCP connection initiator79

• rSF: connection management flags (i.e., reset, synchronization, and finish, respectively) sent80

by the initiator throughout the connection , and capitalized letters indicating observed flags81

• resp IP: the IP address of the TCP connection responder82

• resp port: the port number of the TCP connection responder83

• resp pkts: the number of packets sent by the TCP connection responder84

• rSf: connection management flags (i.e., reset, synchronization, and finish, respectively) sent85

by the responder throughout the connection, and capitalized letters indicating observed flags86

3



4.1.2 TCP connection details87

The network traffic analyzer should print out the detailed information about a particular TCP88

connection, when being invoked as:89

./nta <tcpdump_filename> <init_IP> <init_port> <resp_IP> <resp_port>90

If being successfully invoked, the network traffic analyzer should print out the detailed informa-91

tion about the specified TCP connection in the following format:92

pkt_num: src_IP:src_port > dst_IP:dst_port uaprSf seqno ackno win93

pkt_num: src_IP:src_port > dst_IP:dst_port uAprSf seqno ackno win94

...95

pkt_num: src_IP:src_port > dst_IP:dst_port uAprsf seqno ackno win96

That is,97

• pkt num: packet number, incrementing from 1 and indicating the order of the packet observed98

in the connection99

• src IP: source IP address100

• src port: source port number101

• dst IP: destination IP address102

• dst port: destination port number103

• uaprSf: TCP flags, capitalized letters indicating flags that are set in this packet104

• seqno: TCP sequence number, relative from the first sequence number of this connection105

• ackno: relative TCP acknowledgment number106

• win: TCP window size107

4.1.3 Packet round-trip time108

The network traffic analyzer should print out the round-trip time information for a particular TCP109

packet, when being invoked as:110

./nta <tcpdump_filename> <src_IP> <src_port> <dst_IP> <dst_port> <seqno>111

If being successfully invoked, the network traffic analyzer should print out the round-trip infor-112

mation about the specified TCP packet in the following format:113

dat_pkt_time src_IP:src_port > dst_IP:dst_port uaprsf seqno ackno win114

ack_pkt_time src_IP:src_port > dst_IP:dst_port uAprsf seqno ackno win115

That is,116

• dat pkt time: the time when the data packet is captured, in the format of HH:MM:SS:microsecond117

• ack pkt time: the time when the corresponding acknowledgment packet is captured118

Be aware that TCP adopts cumulative acknowledgment and may adopt delayed acknowledgment,119

and data packets might get retransmitted.120

4



4.2 Bonus Features121

The simple network traffic analyzer only reveals very little and coarse information about the traffic122

contained in the tcpdump file, e.g., TCP connections and packets. There is much more information123

can be revealed and inferred, e.g., the round-trip timeout value, congestion window at the sender.124

If you want to design and implement a bonus feature, you should contact the course instructor125

for permission at least one week before the code due date and clearly indicate the feature during126

project demo and in code submission. The credit for correctly implemented bonus features will not127

exceed 20% of the full marks for this lab project.128

5 Self-Testing129

A tcpdump file will be provided for your self-testing. You can use Ethereal (Wireshack), TCPdump,130

or TCPtrace to examine the tcpdump file, and test your design and implementation.131

However, your traffic analyzer might be tested against different tcpdump files during project132

demo and code inspection.133

6 Demonstration134

Your traffic analyzer should be demonstrated in the lab section for which you have registered on135

the demo due date. Lab projects not demonstrated will have their code submission not136

marked. It is expected that your lab project be working at the time of demonstration.137

During the project demo, lab instructors will go through a demo checklist together with the student,138

and then provide the checklist to the student. Students will have the chance to improve their design139

and implementation until the code due date.140

The demo is intended to allow students to demonstrate their projects and to help them improve141

their design and implementation, not to be coding or debugging assistance, and only focuses on142

required features. There is no guarantee on the correctness and grade of the project, which can143

only be determined after the code inspection.144

7 Submission145

The entire lab project, including the code and documentation, should be submitted electrically146

through csc450l (l is for letter L) at http://www.csc.uvic.ca/∼submit/index.cgi on or before147

the code due date.148

Only the source code (including header files and Makefile) and documentation (including149

readme.txt) should be included in a single tar.gz file to be submitted. No object or binary150

files are included in the submission. If directory is your project directory, to create such a gzipped151

tarball, you can152

cd direcoty153

tar -zcvf p3.tar.gz .154

This packing and naming convention should be strictly followed to allow your submission to be155

properly located for grading.156

In directory, you need to include a Makefile, which compiles and builds the final binary157

executable (nta) automatically by typing158

5



make159

The same Makefile also removes all object and executable files when you type in160

make clean161

All projects will be tested on linux.csc.uvic.ca162

In directory, you need to include readme.txt in plain text format, which contains your student163

number, registered lab section and a brief description of your code structure.164

The code itself should be sufficiently self-documented. For more information on acceptable165

coding style, please see [1].166

IMPORTANT: All submitted work should be yours. If you have used anything out there, even167

a small component in your design and implementation, you should credit and reference properly,168

and your contribution can be determined accordingly. For academic integrity policies, please see [2].169

8 Marking170

This lab project is worth 15% in the final grade of this course for CSc 450 students, and 10% for171

CSc 550 students.172

For mark posting and appeal policies, please see the official course outline at [2].173

References174

[1] http://www.csc.uvic.ca/∼csc450l/references/Code-Style.html175

[2] http://courses.seng.engr.uvic.ca/courses/2007/summer/csc/450176

6


