CSc 461/561 Multimedia Systems Review on TCP/IP Networking

Jianping Pan Spring 2006

2/7/06 CSc 461/561

Application-oriented view

• Applications

- remote login: e.g., telnet
- file transfer: e.g., ftp
- electronic mail: e.g., email
- world-wide web: the Web!

• Requirements

- move data from one location to another
- elastic, error-free, in-sequence

Client-server applications

- E.g., HTTP
 - HTTP client (browser)
 - **GET** /index.html HTTP/1.1
 - Host: www.example.com
 - (parameters)
 - HTTP server (Web server)
 - HTTP/1.1 200 OK
 - (metadata)
 - (data)

2/7/06

3

Protocols to support

CSc 461/561

- TCP/IP
 - the Internet Protocol Suite
- TCP offers
 - connection oriented
 - reliable, in-sequence, stream-like data transfer
- IP offers
 - addressing and routing; connectionless
 - IP packets may be lost, corrupted, duplicated, reordered

2/7/06 CSc 461/561

link

Ethernet, etc

TCP

- Connection management
 - through packet handshake (SYN, FIN, ACK)
 - Multiplexing: port number
- Flow, error, congestion control
 - sequence number
 - acknowledgment number
 - window size
 - checksum

Packet handshake

connection establishment

connection release

7

2/7/06 CSc 461/561

Flow control

- Purpose: pace sender and receiver
 - according to their buffer size
- Receiver's (advertised) window
 - available buffer space
- Sender's window
 - sliding window-based flow control
 - only send data within the window
 - sender's window < receiver's window

Error control

- Error detection
 - receiver: sequence number, TCP checksum
 - sender: timeout
- Error notification
 - receiver=>sender: duplicate acknowledgment
- Error recovery
 - sender: end-to-end retransmission

Go-back-N retransmission

- Sender: send packet 1, 2, 3, 4, 5, 6
- Receiver: receive packet 1, 2, 3, 5, 6
 - cumulatively acknowledge up to packet 3
- Sender: send packet 7, 8, 9
 - timeout for packet 4; retransmit packet 4
- Receiver
 - cumulatively acknowledge up to packet 9
- Sender: send packet 10, 11, 12, ...

11

12

Congestion control

- Was not there when TCP was first designed
- Added to TCP since late 80s
 - heavily coupled with flow/error control
 - heavily explored research topics in decades!
- Purpose: pace sender and network
 - competing flows
 - overload network (e.g., output queue)
 - cause packet losses when queues overflow

Congestion window

- Slow start
 - start with an initial congestion window (cwnd)
 - usually initial cwnd = 1 full-size packet
 - double window size every round-trip time until cwnd is above slow start threshold (ssthresh)
- Congestion avoidance
 - increase window size linearly

2/7/06 CSc 461/561 1

Congestion window: more

- · Back-off
 - when timeout occurs, assume packet loss happened [error control]
 - ssthresh = 0.5 * current_cwnd
 - restart with the initial cwnd
 - retransmit with doubled timer [error control]

Congestion control: more

- Fast retransmit
 - retransmit with 3 duplicate acknowledgments
 - slow start threshold (ssthresh) to be a half of current congestion window (cwnd)
 - restart with the initial congestion window
- Fast recovery
 - similar to Fast retransmit
 - but restart with cwnd = ssthresh

UDP

- Why TCP is not enough?
 - sometimes TCP is an overkill
 - e.g., loss-tolerant, delay-sensitive applications
- UDP offers
 - connectionless, datagram-like data transfer
 - no reliability, in-sequence guarantee
 - flexibility to plug-in flow/error/congestion etc in application layers

2/7/06 CSc 461/561 17

UDP header

This lecture

- A quick review on
 - Internet Protocol Suite
 - TCP
 - UDP
- Bonus question
 - Why TCP header has no "TCP length" field such as "UDP length" in UDP header?

2/7/06 CSc 461/561 19

Next lecture

- IP
- Why multimedia networking is different?