Advanced Computer Networks

Network Architectures

Jianping Pan Summer 2007

Internet architectures

- Design principles
 - store-and-forward packet switching
 - end-to-end arguments
 - "best-effort" services
- "Hour glass" protocol model
 - application: telnet, ftp, email, web, voip, ...
 - transport: TCP, UDP, RTP, SCTP
 - network: IP/ICMP
 - subnetwork: Ethernet, ATM, FDDI, PPP, ...

New requirements

- Service
 - better than "best-effort", quality of service (QoS)
- Scalability (growth)
 - next generation IP (IPv6) vs NAT
- Multicast
 - IP Multicast vs application/overlay multicast
- Mobility
 - Mobile IP (MIP)
- Security

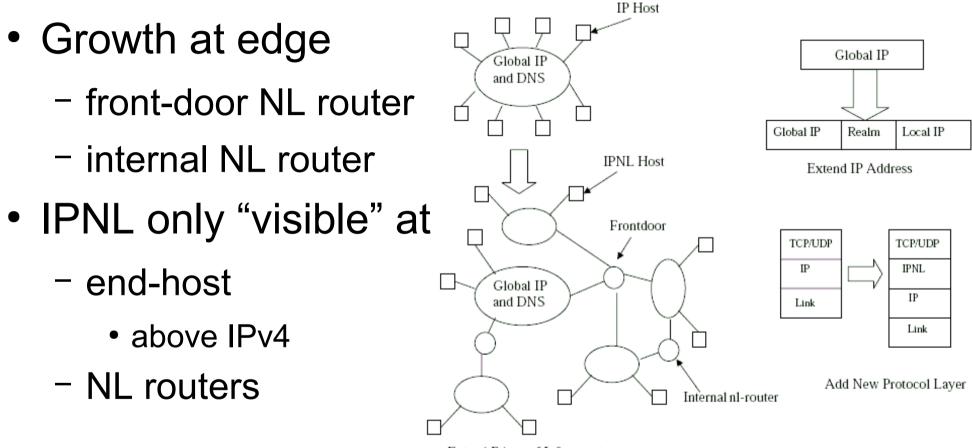
Middle boxes

- Challenges to "end-to-end arguments"
- Application
 - e.g., web proxy, cache server, load balancer
 - e.g., SIP border controller
- Transport
 - e.g., SOCK
- Network
 - e.g., stateful firewall

e.g., network address translator (NAT)

How does NAT work?

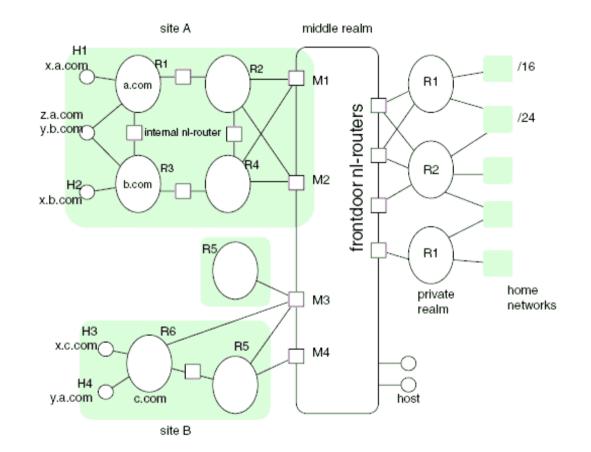
- Address translation
 - address mapping creation
- Packet filtering
 - based on created address mapping
- NAT behaviors
 - full cone, restricted cone, port-restricted cone
 - symmetric


NAT: pros and cons

- Pros
 - extend IPv4 address space
 - make site renumbering easy
 - address isolation
- Cons
 - no longer always "global addressable"
 - need extra mechanisms (e.g., NAT traversal)
 - the loss of "end-to-end"
 - complicate network design and operation

What's next?

- Think out of the box!
- IP Next Layer (IPNL) [FG01]
 - reuse the existing infrastructure
 - IPNL is just above IPv4 and routed by NAT boxes
 - use FQDN as end-host identifier
 - fully qualified domain name
 - extend IP address space
 - global (unique) address + private (reusable) address
 - isolate site addressing
 - easy site renumbering


IPNL at the edge

Extend Edges of Infrastructure

IPNL: more details

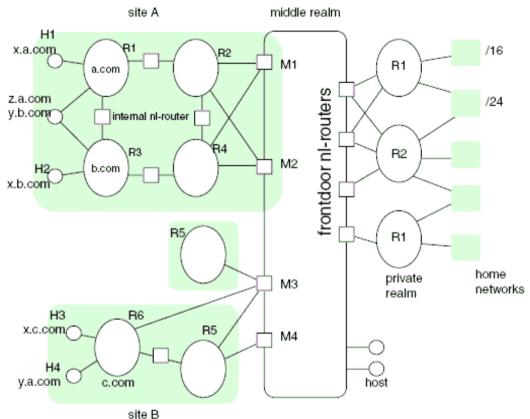
- Multi-homing
 - z.a.com
 - y.b.com
- Mobility
 - visiting: y.a.com
 - visited: c.com
- Realm vs site

IPNL routing: address and name

- MRIP
 - middle realm IP
 - frontdoor's
- RN
 - realm number
 - behind frontdoor
- EHIP
 - end-host IP
 - within a realm

4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 local rsion|Loc|G|F| Protocol | Local or Used Source Realm header Source EHIP Local Dest Realm Dest EHIP Random ID (RID) + optional Global Dest Realm Global Source Realm global + header Dest MRIP Source MRIP Used Source MRIP optional FODN FODN Header header

Site address isolation


- Separate local vs global header
 - end-host is only configured with
 - EHIP: local identity in a realm
 - FQDN: global identity (long term, unique)
 - "local" packets have no MRIP
 - behind the same frontdoor
- Realm number independence
 - local vs global realm number
 - global RN allocated by the frontdoor

More on site isolation

- In-flight IPNL address resolution (late-binding)
 - End host should know the destination's FQDN
 - destination MRIP resolved by frontdoor
 - source RN and MRIP added by internal/frontdoor
 - received "used source" for return packets
 - destination RN and EHIP added by dest frontdoor/internal
- Location field (2-bit)
 - behind the source frontdoor
 - in the middle
 - behind the destination frontdoor

Examples

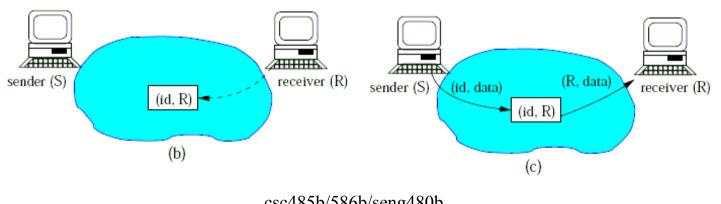
- H1-H4
 - through middle realm
- H1-H2
 - behind the same frontdoor
- H1-z.a.com
 - in the same realm
- H1-H3

- "redirect"

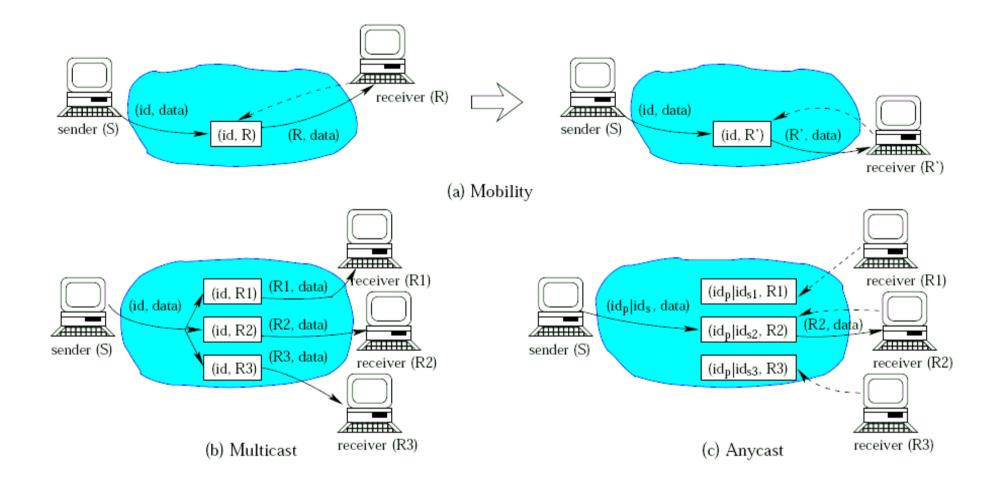
Robustness

- In-band trace
 - learn how to send from what has been received
 - list of MRIP for the destination
 - list of MRIP+RN for the destination
 - the latest "used source MRIP+RN" for the destination
- Path discovery
 - progressive path discovery

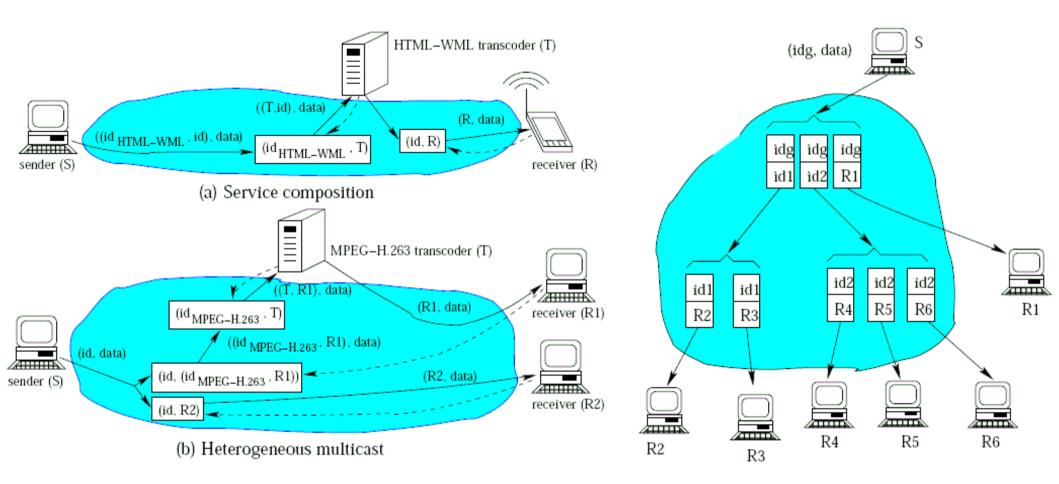
Discussion


- Addressing and routing
 - IP address has both roles
 - 5-tuple for session identification
 - difficult to support mobility
 - discourage spoofing somehow
- IPNL approach
 - FQDN primarily as an identifier
 - IPNL address primarily as a locater
 - random ID (RID) for session protection

Internet Indirection Infrastructure [I3]


- "any computer science problems can be solved by introducing another layer of indirection..."
- Traditional client-server model
 - server should be ready first
 - client is active, server is passive
 - client request followed by server response
- Traditional send-receive model
 - receive should be ready first
 - send is active, receive is passive

Rendezvous-based communication


- insertTrigger(t);
- sendPacket(p);
- removeTrigger(t); // optional

Some applications

More examples

This lecture

- (some new) Internet architecture designs
 - IPNL: an extension to NAT
 - I3: indirection
- A1: course project ideas
 - due Friday, May 18, to pan@uvic.ca
 - any topic related to computer networks
 - you should justify it and I can help
 - final deliverables: report+presentation plus prototype
 - next checkpoint (end of May)
 - 1-page project proposal csc485b/586b/seng480b

Next lectures

- Overlay and peer-to-peer networking
 - required reading
 - [ABKM01] D. Anderson, H. Balakrishnan, F. Kaashoek, R. Morris, Resilient Overlay Networks, In Proc. of SOSP '01. [RON]
 - [SMKKB01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, Hari Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications," Proceedings of the 2001 ACM SIGCOMM Conference, August 2001. [Chord]